久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長(zhǎng)、見(jiàn)賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-29 21:18:00 | 移動(dòng)端:人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

新人教A版數(shù)學(xué)必修五知識(shí)要點(diǎn)總結(jié)

第一章解三角形

1、內(nèi)角和定理:(1)三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余.(2)銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方.

2、正弦定理:

abc2R(R為三角形外接圓的半徑).

sinAsinBsinC(1)a:b:csinA:sinB:sinC;(2)a2RsinA,b2RsinB,c2RsinC(3)解三角形:已知三角形的幾個(gè)元素求另外幾個(gè)元素的過(guò)程。

可求其它邊和角已知兩角和任意一邊,,可求其它元素已知兩邊和一邊的對(duì)角注意:已知兩邊一對(duì)角,求解三角形,若用正弦定理,則務(wù)必注意可能有兩解.

b2c2a2cosA2bca2b2c22bccosA222acb2223、余弦定理:(求邊)bac2accosB或(求角)cosB2acc2a2b22abcosC222cosCabc2ab已知兩邊一角求第三邊.已知三邊求所有三個(gè)角(注:常用余弦定理鑒定三角形的類型)已知兩邊和一邊對(duì)角,求其它12absinC1abc14、三角形面積公式:SahabcsinA.

224R1acsinB25、解三角形應(yīng)用

(1)在視線和水平線所成的角中,視線在水平線上方的角叫仰角;視線在水平線下方的角叫俯角。

(2)從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向的水平角叫方位角。(3)坡面與水平面所成的二面角度數(shù)的正切值叫做坡度。(4)解斜三角形應(yīng)用題的一般步驟:

分析→建!蠼狻鷻z驗(yàn)新人教A版數(shù)學(xué)必修五知識(shí)要點(diǎn)總結(jié)

第二章數(shù)列

1.?dāng)?shù)列的通項(xiàng)、數(shù)列的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前n項(xiàng)和公式的關(guān)系:an,(n1)SSS,(n2)1nn1(必要時(shí)請(qǐng)分類討論).

注意:an(anan1)(an1an2)(a2a1)a1;an2.等差數(shù)列{an}中:

(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.

anan1a2a1.

an1an2a1d0數(shù)列單調(diào)遞增,可知d的取值為dR.d0數(shù)列為常數(shù)列d0數(shù)列單調(diào)遞減(2)ana1(n1)dam(nm)d;pqmnapaqaman.(3)1an2bn、{kan}也成等差數(shù)列.

(4)在等差數(shù)列{an}中,若amn,anm(mn),則amn0.(5)a1a2am,akak1akm1,仍成等差數(shù)列.(6)Snn(a1an)n(n1)ddSd,Snn2(a1)n,an2n1,,Snna1。

2n12222amS2m1.bmT2m1an(7)若Sn,Tn分別為等差數(shù)列,bn的前項(xiàng)和,則兩數(shù)列第m項(xiàng)之比(8)若an為等差數(shù)列,則其前m項(xiàng)和、中間m項(xiàng)和、后m項(xiàng)和Sm,S2mSm,S3mS2m成等差數(shù)列。

(9)“首正”的遞減等差數(shù)列中,前n項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;

“首負(fù)”的遞增等差數(shù)列中,前n項(xiàng)和的最小值是所有非正項(xiàng)之和;

(10)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),?紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.

(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式).新人教A版數(shù)學(xué)必修五知識(shí)要點(diǎn)總結(jié)

3.等比數(shù)列{an}中:

(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性.

(2)ana1qn1amqnm;pqmnbpbqbmbn.(3){an}、{bn}成等比數(shù)列{|an|}、an,aa1、,{ka}abb2nnnn成等比數(shù)列.nn(4)a1a2am,akak1akm1,成等比數(shù)列.

na1(q1)na1(q1)a1n(5)Sna1anqa1(1qn).a(chǎn)1q(q1)(q1)1q1q1q1q特別:anbn(ab)(an1an2ban3b2abn2bn1).

(6)若an為等比數(shù)列,則其前m項(xiàng)和、中間m項(xiàng)和、后m項(xiàng)和Sm,S2mSm,S3mS2m成等比數(shù)列。

(7)“首大于1”的正值遞減等比數(shù)列中,前n項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前n項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;

(8)有限等比數(shù)列中,若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”=“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和.

(9)等比中項(xiàng)要么不存在,要么僅當(dāng)實(shí)數(shù)a,b同號(hào)時(shí)存在,且必有一對(duì)Gab.(10)判定是否是等比數(shù)列的方法:定義法、中項(xiàng)法、通項(xiàng)法、和式法。4.等差數(shù)列與等比數(shù)列的聯(lián)系

(1)如果數(shù)列{an}成等差數(shù)列,那么數(shù)列{An}(An總有意義)必成等比數(shù)列.(2)如果數(shù)列{an}成等比數(shù)列,那么數(shù)列{loga|an|}(a0,a1)必成等差數(shù)列.(3)如果數(shù)列{an}既成等差又成等比,那么數(shù)列{an}是非零常數(shù)數(shù)列;但反之不成立。(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,5.?dāng)?shù)列求和的常用方法:

(1)公式法:①等差數(shù)列求和公式(三種形式),

②等比數(shù)列求和公式(三種形式),

aa新人教A版數(shù)學(xué)必修五知識(shí)要點(diǎn)總結(jié)

2222③123n1n(n1),123n1n(n1)(2n1),

26135(2n1)n2,135(2n1)(n1)2.

(2)分組求和法:常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和.(3)倒序相加法;(4)錯(cuò)位相減法;(5)裂項(xiàng)相消法:①

1111,②1(11),

n(n1)nn1n(nk)knnk特別聲明:運(yùn)用等比數(shù)列求和公式,務(wù)必檢查公比與1的關(guān)系,必要時(shí)分類討論.

三、不等式

1.(1)求不等式的解集,務(wù)必用集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對(duì)應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值.

(2)解分式不等式fxaa0(移項(xiàng)通分,等價(jià)為分子分母相乘大于或小于0);gx(3)含有兩個(gè)絕對(duì)值的不等式(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);(4)解含參不等式常分類等價(jià)轉(zhuǎn)化,必要時(shí)需分類討論.注意:按參數(shù)討論,最后按參數(shù)取值分別說(shuō)明其解集,但若按未知數(shù)討論,最后應(yīng)求并集.

2.利用重要不等式ab2ab以及變式ab(ab)等求函數(shù)的最值時(shí),務(wù)必注意a,

22bR,且“等號(hào)成立”時(shí)的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三相等).

22ababab2(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)3.常用不等式:2211aba、b、cR,abcabbcca(當(dāng)且僅當(dāng)abc時(shí),取等號(hào))4.比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法

5.含絕對(duì)值不等式的性質(zhì):

222a、b同號(hào)或有0|ab||a||b|||a||b|||ab|;a、b異號(hào)或有0|ab||a||b|||a||b|||ab|.

6.不等式的恒成立問(wèn)題

若不等式fxA在區(qū)間D上恒成立,則等價(jià)于在區(qū)間D上fxminA若不等式fxB在區(qū)間D上恒成立,則等價(jià)于在區(qū)間D上fxmaxB

擴(kuò)展閱讀:高中數(shù)學(xué)必修5知識(shí)點(diǎn)總結(jié)(精品)

必修5知識(shí)點(diǎn)總結(jié)

1、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外接圓的半徑,則有

asinbsincsinC2R.

2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④

a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;

csinCabcsinsinsinCsin.

(正弦定理主要用來(lái)解決兩類問(wèn)題:1、已知兩邊和其中一邊所對(duì)的角,求其余的量。2、已知兩角和一邊,求其余的量。)

⑤對(duì)于已知兩邊和其中一邊所對(duì)的角的題型要注意解的情況。(一解、兩解、無(wú)解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫(huà)出圖:法一:把a(bǔ)擾著C點(diǎn)旋轉(zhuǎn),看所得軌跡以AD有無(wú)交點(diǎn):當(dāng)無(wú)交點(diǎn)則B無(wú)解、當(dāng)有一個(gè)交點(diǎn)則B有一解、當(dāng)有兩個(gè)交點(diǎn)則B有兩個(gè)解。法二:是算出CD=bsinA,看a的情況:當(dāng)a但不能到達(dá),在岸邊選取相距3千米的C、D兩點(diǎn),并測(cè)得∠ACB=75O,∠BCD=45O,∠ADC=30O,

∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離。本題解答過(guò)程略

附:三角形的五個(gè)“心”;重心:三角形三條中線交點(diǎn).

外心:三角形三邊垂直平分線相交于一點(diǎn).內(nèi)心:三角形三內(nèi)角的平分線相交于一點(diǎn).垂心:三角形三邊上的高相交于一點(diǎn).7、數(shù)列:按照一定順序排列著的一列數(shù).8、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).9、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.10、無(wú)窮數(shù)列:項(xiàng)數(shù)無(wú)限的數(shù)列.

11、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列(即:an+1>an).12、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列(即:an+1④nana1d1;⑤danamnm.

21、若an是等差數(shù)列,且mnpq(m、n、p、q*),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q*),則2anapaq.22、等差數(shù)列的前n項(xiàng)和的公式:①Snna1an2;②Snna1nn12d.③

sna1a2an

23、等差數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn*,則S2nnanan1,且S偶S奇nd,

S奇S偶anan1.

S奇S偶nn1②若項(xiàng)數(shù)為2n1n*,則S2n12n1an,且S奇S偶an,S偶n1an).

(其中S奇nan,

24、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.符號(hào)表示:

an1anq(注:①等比數(shù)列中不會(huì)出現(xiàn)值為0的項(xiàng);②同號(hào)位上

的值同號(hào))

注:看數(shù)列是不是等比數(shù)列有以下四種方法:

2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)

③ancqn(c,q為非零常數(shù)).

④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.

25、在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項(xiàng).若Gab,

22則稱G為a與b的等比中項(xiàng).(注:由Gab不能得出a,G,b成等比,由a,G,bGab)

2n126、若等比數(shù)列an的首項(xiàng)是a1,公比是q,則ana1q.

27、通項(xiàng)公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.

*28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比

數(shù)列,且2npq(n、p、q*),則anapaq.

na1q129、等比數(shù)列an的前n項(xiàng)和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an

30、對(duì)任意的數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an的關(guān)系:ans1a1(n1)snsn1(n2)

[注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項(xiàng)和Sndddd22AnBnna1n→

222可以為零也可不為零→為等差的充要條件→若

為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.

③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見(jiàn)的數(shù)列的思想方法:⑴等差數(shù)列的前n項(xiàng)和為Sn,在d0時(shí),有最大值.如何確定使Sn取最大值時(shí)的n值,有兩種方法:

d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項(xiàng)公式、求和公式與函數(shù)對(duì)應(yīng)關(guān)系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項(xiàng)和公式通項(xiàng)公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.

對(duì)應(yīng)函數(shù)(時(shí)為一次函數(shù))(指數(shù)型函數(shù))對(duì)應(yīng)函數(shù)(時(shí)為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點(diǎn)揭開(kāi)了數(shù)列神秘的“面紗”,將數(shù)列的通項(xiàng)公式以及前n項(xiàng)和看成是關(guān)于n的函數(shù),為我們解決數(shù)列有關(guān)問(wèn)題提供了非常有益的啟示。例題:1、等差數(shù)列分析:因?yàn)?/p>

中,,則.

是等差數(shù)列,所以是關(guān)于n的一次函數(shù),

一次函數(shù)圖像是一條直線,則(n,m),(m,n),(m+n,)三點(diǎn)共線,

所以利用每?jī)牲c(diǎn)形成直線斜率相等,即,得=0(圖像如上),這里利用等差數(shù)

列通項(xiàng)公式與一次函數(shù)的對(duì)應(yīng)關(guān)系,并結(jié)合圖像,直觀、簡(jiǎn)潔。例題:2、等差數(shù)列

中,

,前n項(xiàng)和為

,若

,n為何值時(shí)

最大?

分析:等差數(shù)列前n項(xiàng)和可以看成關(guān)于n的二次函數(shù)=,

是拋物線=上的離散點(diǎn),根據(jù)題意,,

則因?yàn)橛笞畲蟆?/p>

最大值,故其對(duì)應(yīng)二次函數(shù)圖像開(kāi)口向下,并且對(duì)稱軸為,即當(dāng)時(shí),

例題:3遞增數(shù)列,對(duì)任意正整數(shù)n,

遞增得到:

恒成立,設(shè)

恒成立,求

恒成立,即,則只需求出。

,因?yàn)槭沁f的最大值即

分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然

有最大值

對(duì)一切

對(duì)于一切

,所以看成函數(shù)

的取值范圍是:

構(gòu)造二次函數(shù),,它的定義域是

增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線對(duì)稱軸,因?yàn)楹瘮?shù)f(x)

為離散函數(shù),要函數(shù)單調(diào)遞增,就看動(dòng)軸與已知區(qū)間的位置。從對(duì)應(yīng)圖像上看,對(duì)稱軸的左側(cè)

也可以(如圖),因?yàn)榇藭r(shí)B點(diǎn)比A點(diǎn)高。于是,

,得

⑵如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積,求此數(shù)列前n項(xiàng)和可依照等比數(shù)列前

n項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和.例如:112,314,...(2n1)12n,...

⑶兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),

公差是兩個(gè)數(shù)列公差d1,d2的最小公倍數(shù).

2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證anan1(anan1)為同一常數(shù)。(2)通項(xiàng)公式法。(3)中項(xiàng)公式法:驗(yàn)證

2an1anan2(an1anan2)nN都成立。

2am03.在等差數(shù)列{an}中,有關(guān)Sn的最值問(wèn)題:(1)當(dāng)a1>0,d把①式兩邊同乘2后得

2sn=122232n2234n1②

用①-②,即:

123nsn=122232n2①

2sn=122232n2234n1②

sn12222n22(12)12n1n23nn1n2n1

22n2n1n1(1n)22∴sn(n1)2n12

4.倒序相加法:類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.5.常用結(jié)論1):1+2+3+...+n=

n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)

1n(n1)1n1n1

1n(n2)1pq111()2nn21qp1p1q6)()(pq)

31、ab0ab;ab0ab;ab0ab.

32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;

nd0acabdb0a⑥;⑦

⑧ab0

nnbn,n1;

anbn,n1.

33、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.34、含絕對(duì)值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法

穿根法(零點(diǎn)分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)

解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區(qū)間;若不等式是“

由圖可看出不等式x23x26x80的解集為:

x|2x1,或x4

(x1)(x2)(x5)(x6)(x4)0的解集。

例題:求解不等式

解:略

一元二次不等式的求解:

特例①一元一次不等式ax>b解的討論;

②一元二次不等式ax+bx+c>0(a>0)解的討論.

二次函數(shù)yax22

000bxc有兩相異實(shí)根x1,x2(x1x2)(a0)的圖象一元二次方程ax2有兩相等實(shí)根x1x2b2abxc0a0的根2無(wú)實(shí)根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對(duì)于a0(或

f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)

1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)

f(x)例題:求解不等式:解:略例題:求不等式

xx11

1的解集。

3.含絕對(duì)值不等式的解法:基本形式:

①型如:|x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:

其中-c3x23x23x2(x2)(x3)10xR③當(dāng)x2時(shí),(去絕對(duì)值符號(hào))原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:

令f(x)|x2||x3|

2x1(x3)則有:f(x)5(3x2)

2x1(x2)f(x)=1051123o292x在直角坐標(biāo)系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實(shí)根的分布常借助二次函數(shù)圖像來(lái)分析:y設(shè)ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0

0o對(duì)稱軸x=b2ax

0b0②若兩根都小于0,即0,0,則有2af(0)0y

11

對(duì)稱軸x=b2aox

③若兩根有一根小于0一根大于0,即0,則有f(0)0

④若兩根在兩實(shí)數(shù)m,n之間,即mn,

0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個(gè)根在三個(gè)實(shí)數(shù)之間,即mtn,

yf(m)0則有f(t)0

f(n)0

常由根的分布情況來(lái)求解出現(xiàn)在a、b、c位置上的參數(shù)

例如:若方程x2(m1)xm2m30有兩個(gè)正實(shí)數(shù)根,求m的取值范圍。

4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個(gè)正實(shí)數(shù)根時(shí),m3。

又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。

55220m(1)4(m1)02解:因?yàn)橛袃蓚(gè)不同的根,所以由21m122f(1)011m101m12235、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

36、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.

37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對(duì)x,y,所有這樣的有序數(shù)對(duì)x,y構(gòu)成的集合.

38、在平面直角坐標(biāo)系中,已知直線xyC0,坐標(biāo)平面內(nèi)的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的下方.39、在平面直角坐標(biāo)系中,已知直線xyC0.(一)由B確定:

①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線

xyC0下方的區(qū)域.

②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線

xyC0上方的區(qū)域.

(二)由A的符號(hào)來(lái)確定:

先把x的系數(shù)A化為正后,看不等號(hào)方向:

①若是“>”號(hào),則xyC0所表示的區(qū)域?yàn)橹本l:xyC0的右邊部分。②若是“線性規(guī)劃問(wèn)題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問(wèn)題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.

最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.41、設(shè)a、b是兩個(gè)正數(shù),則

ab2稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).

ab2ab.

42、均值不等式定理:若a0,b0,則ab2ab,即

43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③

abab2a0,b0;

2④

ab222ab2a,bR.

44、極值定理:設(shè)x、y都為正數(shù),則有:

⑴若xys(和為定值),則當(dāng)xy時(shí),積xy取得最大值

s42.⑵若xyp(積為定值),則當(dāng)xy時(shí),和xy取得最小值2例題:已知x解:∵x5454p.

14x5,求函數(shù)f(x)4x2的最大值。

,∴4x50

由原式可以化為:

f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132

當(dāng)54x154x2,即(54x)1x1,或x32(舍去)時(shí)取到“=”號(hào)

也就是說(shuō)當(dāng)x1時(shí)有f(x)max2

友情提示:本文中關(guān)于《人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


人教版數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/741801.html