久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 計(jì)劃總結(jié) > 工作總結(jié) > 高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16

高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-29 21:17:59 | 移動(dòng)端:高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16

高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16

名成教育輔導(dǎo)中心教學(xué)資料TEL:15859099020(張老師)高中數(shù)學(xué)必修5第一章解三角形復(fù)習(xí)201*-9-16

一、知識(shí)點(diǎn)總結(jié)

abc2R或變形:a:b:csinA:sinB:sinC.1.正弦定理:

sinAsinBsinCb2c2a2cosA2222bcabc2bccosA

2a2c2b2222.余弦定理:bac2accosB或cosB.

2acc2b2a22bacosC

b2a2c2

cosC

2ab

3.(1)兩類正弦定理解三角形的問題:1、已知兩角和任意一邊,求其他的兩邊及一角.

2、已知兩角和其中一邊的對角,求其他邊角.(2)兩類余弦定理解三角形的問題:1、已知三邊求三角.

2、已知兩邊和他們的夾角,求第三邊和其他兩角.4.判定三角形形狀時(shí),可利用正余弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,統(tǒng)一成邊的形式或角的形式.

5.解題中利用ABC中ABC,以及由此推得的一些基本關(guān)系式進(jìn)行三角變換的運(yùn)算,如:

sin(AB)sinC,cos(AB)cosC,tan(AB)tanC,

sin已知條件一邊和兩角(如a、B、C)兩邊和夾角(如a、b、c)三邊(如a、b、c)余弦定理余弦定理ABCABCABCcos,cossin,tancot.、222222定理應(yīng)用正弦定理一般解法由A+B+C=180,求角A,由正弦定理求出b與c,在有解時(shí)有一解。由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180求出另一角,在有解時(shí)有一解。由余弦定理求出角A、B,再利用A+B+C=180,求出角C在有解時(shí)只有一解。二、鞏固練習(xí)

一、選擇題

1、ΔABC中,a=1,b=3,∠A=30°,則∠B等于

A.60°

B.60°或120°

C.30°或150°D.120°()

B.a(chǎn)=1,b=2,∠A=30°

1

()

2、符合下列條件的三角形有且只有一個(gè)的是

A.a(chǎn)=1,b=2,c=3

地址:福州市鼓樓區(qū)福新路99號(hào)(陽光城對面)

如果天賜我輝煌,我將比天更囂張

名成教育輔導(dǎo)中心教學(xué)資料TEL:15859099020(張老師)

C.a(chǎn)=1,b=2,∠A=100°3、在銳角三角形ABC中,有

A.cosA>sinB且cosB>sinAC.cosA>sinB且cosB

擴(kuò)展閱讀:高中數(shù)學(xué)必修5第一章解三角形知識(shí)點(diǎn)復(fù)習(xí)及經(jīng)典練習(xí)

高中數(shù)學(xué)必修五第一章解三角形知識(shí)點(diǎn)復(fù)習(xí)及經(jīng)典練習(xí)

一、知識(shí)點(diǎn)總結(jié)

abc2R或變形:a:b:csinA:sinB:sinC.1.正弦定理:

sinAsinBsinC推論:①定理:若α、β>0,且α+β<,則α≤βsinsin,等號(hào)當(dāng)且當(dāng)α=β時(shí)成立。

②判斷三角解時(shí),可以利用如下原理:sinA>sinBA>Ba>bcosAcosBAB(ycosx在(0,)上單調(diào)遞減)

b2c2a2cosA2bca2b2c22bccosA

2a2c2b2222.余弦定理:bac2accosB或cosB.

2acc2b2a22bacosC

b2a2c2

cosC

2ab

3.(1)兩類正弦定理解三角形的問題:1、已知兩角和任意一邊,求其他的兩邊及一角.

2、已知兩角和其中一邊的對角,求其他邊角.(2)兩類余弦定理解三角形的問題:1、已知三邊求三角.

2、已知兩邊和他們的夾角,求第三邊和其他兩角.4.判定三角形形狀時(shí),可利用正余弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,統(tǒng)一成邊的形式或角的形式.5.三角形中的基本關(guān)系:sin(AB)sinC,cos(AB)cosC,tan(AB)tanC,sin已知條件一邊和兩角(如a、B、C)ABCABCABCcos,cossin,tancot222222一般解法由A+B+C=180,求角A,由正弦定理求出b與c,在有解時(shí)有一解。定理應(yīng)用正弦定理兩邊和夾角(如a、b、c)余弦定理由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180求出另一角,在有解時(shí)有一解。三邊(如a、b、c)余弦定理由余弦定理求出角A、B,再利用A+B+C=180,求出角C在有解時(shí)只有一解。

解三角形[基礎(chǔ)訓(xùn)練A組]

一、選擇題

1.在△ABC中,若C900,a6,B300,則cb等于()A.1B.1C.23D.23

2.若A為△ABC的內(nèi)角,則下列函數(shù)中一定取正值的是()A.sinAB.cosAC.tanAD.

1tanA3.在△ABC中,角A,B均為銳角,且cosAsinB,則△ABC的形狀是()A.直角三角形B.銳角三角形C.鈍角三角形D.等腰三角形4.等腰三角形一腰上的高是3,這條高與底邊的夾角為60,則底邊長為()A.2B.

03C.3D.2325.在△ABC中,若b2asinB,則A等于()

A.30或60B.45或60C.120或60D.30或1506.邊長為5,7,8的三角形的最大角與最小角的和是()A.90B.120C.135D.150

000000000000二、填空題

01.在Rt△ABC中,C90,則sinAsinB的最大值是_______________。

2.在△ABC中,若abbcc,則A_________。3.在△ABC中,若b2,B30,C135,則a_________。

4.在△ABC中,若sinA∶sinB∶sinC7∶8∶13,則C_____________。5.在△ABC中,AB0022262,C300,則ACBC的最大值是________。

三、解答題

1.在△ABC中,若acosAbcosBccosC,則△ABC的形狀是什么?

abcosBcosAc()baba3.在銳角△ABC中,求證:sinAsinBsinCcosAcosBcosC。

2.在△ABC中,求證:

4.在△ABC中,設(shè)ac2b,AC3,求sinB的值。

解三角形[綜合訓(xùn)練B組]一、選擇題

1.在△ABC中,A:B:C1:2:3,則a:b:c等于()A.1:2:3B.3:2:1C.1:3:2D.2:3:1

2.在△ABC中,若角B為鈍角,則sinBsinA的值()A大于零B小于零C等于零D不能確定3.在△ABC中,若A2B,則a等于()A.2bsinAB.2bcosAC.2bsinBD.2bcosB4.在△ABC中,若lgsinAlgcosBlgsinClg2,則△ABC的形狀是()A.直角三角形B.等邊三角形C.不能確定D.等腰三角形

5.在△ABC中,若(abc)(bca)3bc,則A()A.90B.60C.135D.1506.在△ABC中,若a7,b8,cosC0000131111,則最大角的余弦是()A.B.C.D.1457.在△ABC中,若tanABa2bab,則△ABC的形狀是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空題

1.若在△ABC中,A600,b1,SABC3,則

abcsinAsinBsinC=_______。

2.若A,B是銳角三角形的兩內(nèi)角,則tanAtanB_____1(填>或ab等于()cABABABABA.2cosB.2cosC.2sinD.2sin

22222.在△ABC中,若C900,則三邊的比

3.在△ABC中,若a7,b3,c8,則其面積等于()A.12B.

21C.28D.63204.在△ABC中,C90,0A45,則下列各式中正確的是()

00A.sinAcosAB.sinBcosAC.sinAcosBD.sinBcosB

5.在△ABC中,若(ac)(ac)b(bc),則A()A.90B.60C.120D.150

0000tanAa22,則△ABC的形狀是()6.在△ABC中,若

tanBbA.直角三角形B.等腰或直角三角形C.不能確定D.等腰三角形

二、填空題

1.在△ABC中,若sinAsinB,則A一定大于B,對嗎?填_________(對或錯(cuò))2.在△ABC中,若cosAcosBcosC1,則△ABC的形狀是______________。3.在△ABC中,∠C是鈍角,設(shè)xsinC,ysinAsinB,zcosAcosB,則x,y,z的大小關(guān)系是___________________________。4.在△ABC中,若ac2b,則cosAcosCcosAcosC2221sinAsinC______。35.在△ABC中,若2lgtanBlgtanAlgtanC,則B的取值范圍是_______________。6.在△ABC中,若bac,則cos(AC)cosBcos2B的值是_________。

2三、解答題

1.在△ABC中,若(ab)sin(AB)(ab)sin(AB),請判斷三角形的形狀。

2.如果△ABC內(nèi)接于半徑為R的圓,且2R(sin2Asin2C)(2ab)sinB,

求△ABC的面積的最大值。

22223.已知△ABC的三邊abc且ac2b,AC

2,求a:b:c

4.在△ABC中,若(abc)(abc)3ac,且tanAtanC33,AB邊上的高為43,求角A,B,C的

大小與邊a,b,c的長

[基礎(chǔ)訓(xùn)練A組]

一、選擇題

b001.Ctan30,batan3023,c2b44,cb23a2.A0A,sinA03.CcosAsin(4.D作出圖形

5.Db2asinB,sinB2sinAsinB,sinA2A)sinB,2A,B都是銳角,則

2AB,AB2,C2

1,A300或150025282721,600,18006001200為所求6.B設(shè)中間角為,則cos2582二、填空題

1111.sinAsinBsinAcosAsin2A222b2c2a21AA,10202.120cos2bc203.62A15,0abbsinA62,a4sinA4sin1504sinAsinBsinB404.120a∶b∶csinA∶sinB∶sinC7∶8∶13,

a2b2c21,C1200令a7k,b8k,c13kcosC2ab2ACBCABACBCAB,,ACBCsinBsinAsinCsinBsinAsinCABAB2(62)(sinAsinB)4(62)sincos

22AB4cos4,(ACBC)max4

2三、解答題

5.4

1.解:acosAbcosBccosC,sinAcosAsinBcosBsinCcosC

sin2Asin2Bsin2C,2sin(AB)cos(AB)2sinCcosCcos(AB)cos(AB),2cosAcosB0cosA0或cosB0,得A所以△ABC是直角三角形。

2或B2

a2c2b2b2c2a22.證明:將cosB,cosA代入右邊

2ac2bc

a2c2b2b2c2a22a22b2)得右邊c(

2abc2abc2aba2b2ab左邊,

abba∴

abcosBcosAc()baba3.證明:∵△ABC是銳角三角形,∴AB∴sinAsin(2,即

2A2B0

B),即sinAcosB;同理sinBcosC;sinCcosA

2∴sinAsinBsinCcosAcosBcosC

ACACBBcos4sincos,4.解:∵ac2b,∴sinAsinC2sinB,即2sin2222∴sinBB1AC3B13,而0,∴cos,cos22222424∴sinB2sinBB31339cos222448[綜合訓(xùn)練B組]

一、選擇題

1.CA6,B3,C2,a:b:csinA:sinB:sinC132::1:3:22222.AAB,AB,且A,B都是銳角,sinAsin(B)sinB3.DsinAsin2B2sinBcosB,a2bcosB4.DlgsinAsinAlg2,2,sinA2cosBsinC

cosBsinCcosBsinCsin(BC)2cosBsinC,sinBcosCcosBsinC0,sin(BC)0,BC,等腰三角形

5.B(abc)(bca)3bc,(bc)a3bc,

22b2c2a21sA,bca3bc,coA2bc22220606.Ccab2abcosC9,c3,B為最大角,cosB22217ABABsinABabsinAsinB22,7.Dtan2absinAsinB2sinABcosAB222cos

ABAB2,tanAB0,或tanAB1tanAB222tan2所以AB或AB

2tan二、填空題

1.

113239SABCbcsinAc22233c,a42,a13,13

abca13239sinAsinBsinCsinA332sin(B)22.AB,AB,即tanAtan(B)

222cos(B)2cosB11,tanAtanB1,tanAsinBtanBtanBsinBsiCnBtaCn3.2tan

cosBcoCssinBcosCcosBsinCsin(BC)2sinA1cosBcosCsinAsinA24.銳角三角形C為最大角,cosC0,C為銳角

8433bca311045.60cosA2bc6222(31)22222222a2b2c6.(5,13)a2c2bc2b2a13c2222,4c9,5c13,5c1322c942三、解答題

1.解:SABC21bcsinA3,bc4,22abc2bcosA,b所以b1,c4

2c,而5cb

2.證明:∵△ABC是銳角三角形,∴AB∴sinAsin(

2,即

2A2B0

2B),即sinAcosB;同理sinBcosC;sinCcosA

∴sinAsinBsinCcosAcosBcosC,∴tanAtanBtanC1

3.證明:∵sinAsinBsinC2sin

sinAsinBsinC1

cosAcosBcosCABABcossin(AB)22ABABABAB2sincos2sincos

2222ABABAB2sin(coscos)

222CAB2cos2coscos

222ABC4coscoscos

222ABC∴sinAsinBsinC4coscoscos

222aba2acb2bc1,只要證1,4.證明:要證2bcacabbcacc即abcab

而∵AB120,∴C60

00222a2b2c22cosC,ab2c22abcos600ab

2ab∴原式成立。

CA3bccos22221cosC1cosA3sinBsinC∴sinA222即sinAsinAcosCsinCsinCcosA3sinB

5.證明:∵acos2∴sinAsinCsin(AC)3sinB

即sinAsinC2sinB,∴ac2b

[提高訓(xùn)練C組]

一、選擇題

1.CsinAcosA2sin(A),

4而0A,2.B

4A452sin(A)1424absinAsinBsinAsinBcsinCABABABcos2cos2sin2221103.DcosA,A60,SABCbcsinA6322

4.DAB90則sinAcosB,sinBcosA,00A450,sinAcosA,450B900,sinBcosB5.Cacbbc,bcabc,cosA22222201,A1201*sinAcosBsin2AcosBsinA,,sinAcosAsinBcosB6.B

cosAsinBsin2BcosAsinBsinA2sinB2A,2或B2A2B2

二、填空題

1.對sinAsinB,則2.直角三角形

ababAB2R2R)1,1(1cosA21coBs2)2cAosB(21(cos2Acos2B)cos2(AB)0,2cos(AB)cos(AB)cos2(AB)0

cosAcosBcosC0

3.xyzAB2,A2B,siAncBosB,sinAycosz,cab,sinCsinAsinB,xy,xyz

ACACACAC,2sincos4sincos2222ACACACACcos2cos,coscos3sinsin

2222221C2Asin2則sinAsinC4sin3221cosAcosCcosAcosCsinAsinC

3AC(1cosA)(1cosC)14sin2sin2

22ACAC2sin22sin24sin2sin211

2222tanAtanC25.[,)tanBtanAtanC,tanBtan(AC)

32tanAtanC1tanAtanCtanBtan(AC)2tanB1AsiCn4.1sin2sBintan3BtanBtanAtanC2tanAtanC2tanB

tan3B3tanB,tanB0tanB3B3

22(C)cosBco2sB6.1bac,sinBsinAsinC,cosAcosAcosCsinAsinCcosB12sin2B

cosAcosCsinAsinCcosB12sinAsinCcosAcosCsinAsinCcosB1

cos(AC)cosB11

三、解答題

a2b2sin(AB)a2sinAcosBsin2A1.解:2,222absin(AB)bcosAsinBsinB

cosBsiAn,sinA2cosAsiBn∴等腰或直角三角形

siBn2A,2B或22AB2

2.解:2RsinAsinA2RsinCsinC(2ab)sinB,

asinAcsinC(2ab)sinB,a2c22abb2,

a2b2c22abc2ab,cosC,C4502ab2222

c2R,c2RsinC2R,a2b22R22ab,sinC2R22R2abab2ab,ab222221222R2SabsinCab,Smax24422另法:S212R2122absinCab2RsinA2RsinB24422RsinA2RsinB2R2sinAsinB412R2[cos(AB)cos(AB)]

2122R2[cos(AB)]222R22(1)22Smax212R此時(shí)AB取得等號(hào)2ACACACACcos4sincos22223.解:sinAsinC2sinB,2sinsinB1AC2B14BB7cos,cos,sinB2sincos222424224AC2,ACB,A3BB,C4242sinAsin(33371B)sincosBcossinB4444sinCsin(B)sincosBcossinB444714a:b:csinA:sinB:sinC(77):7:(77)

4.解:(abc)(abc)3ac,acbac,cosB2221,B6002tan(AC)tanAtanC33,3,

1tanAtanC1tanAtanCtanAtanC23,聯(lián)合tanAtanC33

00tanA23tanA1A75A45或或得,即00tanC1C45C75tanC23當(dāng)A750,C450時(shí),b434(326),c8(31),a8sinA4346,c4(31),a8sinA當(dāng)A450,C750時(shí),b000∴當(dāng)A75,B60,C45時(shí),a8,b4(326),c8(31),當(dāng)A45,B60,C75時(shí),a8,b46,c4(31)。

000

友情提示:本文中關(guān)于《高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。


高中數(shù)學(xué)必修5 第一章 解三角形復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)201*-9-16》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/741798.html