久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長(zhǎng)、見(jiàn)賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)

中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-29 15:36:21 | 移動(dòng)端:中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)

中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)

一次函數(shù)知識(shí)點(diǎn)總結(jié)

【基本要點(diǎn)】

1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。

例題:在勻速運(yùn)動(dòng)公式svt中,v表示速度,t表示時(shí)間,s表示在時(shí)間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長(zhǎng)公式C=2πr中,變量是________,常量是_________.2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。注:這是課本對(duì)于函數(shù)的定義,在理解與實(shí)際運(yùn)用中我們要注意以下幾點(diǎn):

1、函數(shù)只能描述兩個(gè)變量之間的關(guān)系,多一個(gè)少一個(gè)變量都是不對(duì)的;如:y=xz中有三個(gè)變量,就不是函數(shù);y=0中只有一個(gè)變量,也不是函數(shù);而y=0(x>0)卻是函數(shù),因?yàn)槔ㄌ?hào)中標(biāo)明了自變量的取值范圍;

2、當(dāng)自變量去每一個(gè)確定的值時(shí)因變量只能取唯一確定的值相對(duì)應(yīng),反之,當(dāng)因變量取每一個(gè)確定的值時(shí)自變量可以去若干個(gè)值相對(duì)應(yīng);因?yàn)檫@兩個(gè)變量有先變與后變的問(wèn)題,讓后變的先取一個(gè)值,先變的就不一定只取一個(gè)值;

3、我們只能說(shuō)函數(shù)值是自變量的函數(shù),或用自變量來(lái)表示函數(shù)值,如:a是b的函數(shù)就說(shuō)明a是函數(shù)值,b是自變量;用y表示x就說(shuō)明y是自變量,x是函數(shù)值;任何函數(shù)都要標(biāo)明誰(shuí)是誰(shuí)的函數(shù),不能隨便說(shuō)一個(gè)解析式是不是函數(shù),如:Y=x,只能說(shuō)y是x的函數(shù),就不能說(shuō)x是y的函數(shù);

4、函數(shù)解析式的表示:只有函數(shù)值寫(xiě)在等號(hào)左邊,含有自變量的式子寫(xiě)在等號(hào)右邊;注意不能寫(xiě)成2y=3x-3或y=3x-3的形式;5、任何函數(shù)都包含自變量的取值范圍,如果沒(méi)指明說(shuō)明自變量的取值范圍是任意實(shí)數(shù)。自變量的取值范圍從以下幾個(gè)方面把握:(1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);(2)關(guān)系式含有分式時(shí),分式的分母不等于零;(3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;

(5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。例題:寫(xiě)出下列函數(shù)中自變量x的取值范圍y=2x___________.y=221___________.y=4x2___________.y=x2x2___________.x23、函數(shù)的圖像

一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.4、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。5、描點(diǎn)法畫(huà)函數(shù)圖形的一般步驟

第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);

第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。6、函數(shù)的表示方法

列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。7、正比例函數(shù)及性質(zhì)

一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零

當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k0時(shí),圖像經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;k一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù).注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為零)①k不為零②x指數(shù)為1③b取任意實(shí)數(shù)

一次函數(shù)y=kx+b的圖象是經(jīng)過(guò)(0,b)和(-(1)解析式:y=kx+b(k、b是常數(shù),k0)(2)必過(guò)點(diǎn):(0,b)和(-

b,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個(gè)單位長(zhǎng)度得到.(當(dāng)b>0時(shí),向上平移;當(dāng)b0,圖象經(jīng)過(guò)第一、三象限;k0,圖象經(jīng)過(guò)第一、二象限;b0,y隨x的增大而增大;k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;

當(dāng)by2,則x1與x2的大小關(guān)系是()A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。2、若m<0,n>0,則一次函數(shù)y=mx+n的圖象不經(jīng)過(guò)()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

3、一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過(guò)()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

解:由kb>0,知k、b同號(hào)。因?yàn)閥隨x的增大而減小,所以k(2)二元一次方程組a1xb1yc1acac的解可以看作是兩個(gè)一次函數(shù)y=1x1和y=2x2的圖象交點(diǎn).

b1b1b2b2a2xb2yc2【考點(diǎn)指要】

一次函數(shù)常與反比例函數(shù)、二次函數(shù)及方程、方程組、不等式綜合在一起,以選擇題、填空題、解答題等題型出現(xiàn)在中考題中,解決這類(lèi)問(wèn)題常用到分類(lèi)討論、數(shù)形結(jié)合、方程和轉(zhuǎn)化等數(shù)學(xué)思想方法;為方便大家計(jì)算以及分析題目,現(xiàn)介紹一些解題過(guò)程中可以運(yùn)用的公式與性質(zhì),希望大家能反復(fù)揣摩、理解、運(yùn)用以期熟練地掌握,這樣可以化繁為簡(jiǎn)!這里要強(qiáng)調(diào)的是以下這些公式不要隨便外傳!切記!

1、一次函數(shù)解析式的幾種類(lèi)型

①ax+by+c=0[一般式]

②y=kx+b[斜截式](k為直線斜率,b為直線縱截距,正比例函數(shù)b=0)

③y-y1=k(x-x1)[點(diǎn)斜式](k為直線斜率,(x1,y1)為該直線所過(guò)的一個(gè)點(diǎn))

x1x2y1y2xy⑤=0[截距式](a、b分別為直線在x、y軸上的截距)

abxx2、求函數(shù)圖像的k值:12((x1,y1)與(x2,y2)為直線上的兩點(diǎn))

y1y2④

xx1=

yy1[兩點(diǎn)式]((x1,y1)與(x2,y2)為直線上的兩點(diǎn))

3、求任意線段的長(zhǎng):x1x22y1y22((x1,y1)與(x2,y2)為直角坐標(biāo)系任意兩點(diǎn))

4、求任意兩點(diǎn)所連線段的中點(diǎn)坐標(biāo):(

x1x2yy,12)

225、若兩條直線y=k1x+b1與y=k2x+b2互相平行,那么k1=k2,b1≠b2

6、若兩條直線y=k1x+b1與y=k2x+b2互相垂直,那么k1×k2=-1

7、將y=kx+b向上平移n個(gè)單位后變成y=kx+b+n;向下平移n個(gè)單位變成y=kx+b-n

8、將y=kx+b向左平移n個(gè)單位后變成y=k(x+n)+b;將y=kx+b向右平移n個(gè)單位后變成y=k(x-n)+b(任何圖像的平移都遵循上加下減,左加右減的規(guī)則)9、若y=k1x+b1與y=k2x+b2關(guān)于x軸對(duì)稱,那么k1+k2=0、b1+b2=010、若y=k1x+b1與y=k2x+b2關(guān)于y軸對(duì)稱,那么k1+k2=0、b1=b2

11、同理,y=k1x與y=k2x關(guān)于平行、垂直、平移、對(duì)稱也滿足以上性質(zhì)

b212、y=kx+b與坐標(biāo)軸圍成的三角形面積為

2k13、y=kx(k是常數(shù),k≠0)必過(guò)點(diǎn):(0,0)、(1,k)14、y=kx+b必過(guò)點(diǎn):(0,b)和(-,0)

【例題講解】

例題1:若y是x的一次函數(shù),圖像過(guò)點(diǎn)(-3,2),且與直線y4x6交于x軸上一點(diǎn),求此函數(shù)的解析式。

變式練習(xí)1:求滿足下列條件的函數(shù)解析式:與直線y2x平行且經(jīng)過(guò)點(diǎn)(1,-1)的直線的解析式;

例題2:已知直線ykxb經(jīng)過(guò)(,0),且與坐標(biāo)軸所圍成的三角形的面積為

3

bk5225,求該直線的表達(dá)式。

變式練習(xí)2:一次函數(shù)yk1x4與正比例函數(shù)yk2x的圖象都經(jīng)過(guò)點(diǎn)(2,-1),

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)求這兩個(gè)函數(shù)的圖象與x軸圍成的三角形的面積。

【鞏固練習(xí)】

1,一次函數(shù)y=-2x+4的圖象與x軸交點(diǎn)坐標(biāo)是,與y軸交點(diǎn)坐標(biāo)是2,如圖,一次函數(shù)圖象經(jīng)過(guò)點(diǎn)A,且與正比例函數(shù)yx的圖象交于點(diǎn)B,則該一次函數(shù)的表達(dá)式為()

A.yx2B.yx2C.yx2D.yx2

yxABy21Ox3.已知一次函數(shù)ymxm1的圖象與y軸交于(0,3),且y隨x值的增大而增大,則m的值為()A.2B.-4C.-2或-4D.2或-4

4,將直線y2x向右平移2個(gè)單位所得的直線的解析式是()。

A、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2)

5,把直線y2x1向下平移兩個(gè)單位,再向右平移3個(gè)單位后所得直線的解析式是。6,若函數(shù)yx4與x軸交于點(diǎn)A,直線上有一點(diǎn)M,若△AOM的面積為8,則點(diǎn)M的坐標(biāo)

7,已知直線ykxb的圖像經(jīng)過(guò)點(diǎn)(2,0),(4,3),(m,6),求m的值。8,已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3)

(1)求此一次函數(shù)表達(dá)式;

(2)求此一次函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo);

(3)求此一次函數(shù)的圖象與兩坐標(biāo)軸所圍成的三角形的面積。

9,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,a),求(1)a的值(2)k,b的值

(3)這兩個(gè)函數(shù)圖象與x軸所圍成的三角形面積.

10,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(-6,0),與y軸交于點(diǎn)B,若△AOB的面積是12,且y隨x的增大而減小,求這個(gè)一次函數(shù)的關(guān)系式。

4

擴(kuò)展閱讀:201*中考專(zhuān)題復(fù)習(xí) 一次函數(shù)知識(shí)點(diǎn)總結(jié)

201*中考復(fù)習(xí)專(zhuān)題一次函數(shù)知識(shí)點(diǎn)總結(jié)

一變量:

自變量:自己變化的量;在一個(gè)變化的過(guò)程中,我們稱數(shù)值變化的量是自變量.常量:有些量的數(shù)值是始終不變的量叫常量.函數(shù):被變量是自變量的函數(shù).

函數(shù)值:當(dāng)自變量確定一個(gè)值,被變量隨之確定的一個(gè)值.

因變量:自變量的變化引起另一個(gè)量的變化,另一個(gè)量是因變量.

二一次函數(shù)和正比例函數(shù)的概念

1.概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量),特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù).(1)一次函數(shù)的自變量的取值范圍是一切實(shí)數(shù),但在實(shí)際問(wèn)題中要根據(jù)函數(shù)的實(shí)際意義來(lái)確定.

(2)一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意義相同,即自變量x的次數(shù)為1,一次項(xiàng)系數(shù)k必須是不為零的常數(shù),b可為任意常數(shù).

★判斷一個(gè)等式是否是一次函數(shù)先要化簡(jiǎn)

(3)當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù).(正比例函數(shù))(4)當(dāng)b=0,k=0時(shí),它不是一次函數(shù).

2.函數(shù)的表示方法:1)解析法,2)列表法,3)圖象法.列表法直觀但不完全解析法準(zhǔn)確完全但不直觀

圖象法直觀形象但不夠準(zhǔn)確也不太完全

圖象的畫(huà)法:一列表、二描點(diǎn)、三連線(順次用平滑的曲線)解析式的列法:一)實(shí)際問(wèn)題,確定自變量的取值二)符合題意

三函數(shù)的圖象

把一個(gè)函數(shù)的自變量x與所對(duì)應(yīng)的y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo)在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象.畫(huà)函數(shù)圖象一般分為三步:列表、描點(diǎn)、連線.

一次函數(shù)的圖象

由于一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象是一條直線,所以一次函數(shù)y=kx+b的圖象也稱為直線y=kx+b.

由于兩點(diǎn)確定一條直線,描出適合關(guān)系式的兩點(diǎn),再連成直線,一般選取兩個(gè)特殊點(diǎn):直線與y軸的交點(diǎn)(0,b),直線與x軸的交點(diǎn)(-只要描出點(diǎn)(0,0),(1,k)即可.

四一次函數(shù)性質(zhì)

1.一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的性質(zhì)(1)k的正、負(fù)決定直線的傾斜方向;

①k>0時(shí),y的值隨x值的增大而增大;

b,0).畫(huà)正比例函數(shù)y=kx的圖象時(shí),k用心愛(ài)心專(zhuān)心

②kO時(shí),y的值隨x值的增大而減。2)|k|大小決定直線的傾斜程度,即|k|越大,直線與x軸相交的銳角度數(shù)越大(直線陡),|k|越小,直線與x軸相交的銳角度數(shù)越。ㄖ本緩);(3)b的正、負(fù)決定直線與y軸交點(diǎn)的位置;

①當(dāng)b>0時(shí),直線與y軸交于正半軸上;②當(dāng)b<0時(shí),直線與y軸交于負(fù)半軸上;③當(dāng)b=0時(shí),直線經(jīng)過(guò)原點(diǎn),是正比例函數(shù).

(4)由于k,b的符號(hào)不同,直線所經(jīng)過(guò)的象限也不同;y=kx+b(b≠0)y=kx+b(b≠0)y=kx+b(b≠0)y=kx+b(b≠0)kk>0bb>0經(jīng)過(guò)的象限一,二三Y隨x的變化Y隨x的增大而增大k>0b<0一三四Y隨x的增大而增大k<0b>0一二四Y隨x的增大而減小k<0b<0二三四Y隨x的增大而減小

(5)由于|k|決定直線與x軸相交的銳角的大小,k相同,說(shuō)明這兩個(gè)銳角的大小相等,且它們是同位角,因此,它們是平行的.另外,從平移的角度也可以分析,例如:直線y=x+1可以看作是正比例函數(shù)y=x向上平移一個(gè)單位得到的.2.正比例函數(shù)y=kx(k≠0)的性質(zhì)

(1)正比例函數(shù)y=kx的圖象必經(jīng)過(guò)原點(diǎn);

(2)當(dāng)k>0時(shí),圖象經(jīng)過(guò)第一、三象限,y隨x的增大而增大;(3)當(dāng)k<0時(shí),圖象經(jīng)過(guò)第二、四象限,y隨x的增大而減。

y=kx(k>0)y=kx(k

確定正比例函數(shù)及一次函數(shù)表達(dá)式的條件

(1)由于正比例函數(shù)y=kx(k≠0)中只有一個(gè)待定系數(shù)k,故只需一個(gè)條件(如一對(duì)x,y的值或一個(gè)點(diǎn))就可求得k的值.

(2)由于一次函數(shù)y=kx+b(k≠0)中有兩個(gè)待定系數(shù)k,b,需要兩個(gè)獨(dú)立的條件確定兩個(gè)關(guān)于k,b的方程,求得k,b的值,這兩個(gè)條件通常是兩個(gè)點(diǎn)或兩對(duì)x,y的值.

五一次函數(shù)與方程

1.一元一次方程、一元一次不等式及一次函數(shù)的關(guān)系

一次函數(shù)及其圖像與一元一次方程及一元一次不等式有著密切的關(guān)系,函數(shù)y=ax+b(a≠0,a,b為常數(shù))中,函數(shù)的值等于0時(shí)自變量x的值就是一元一次方程ax+b=0(a≠0)的解,所對(duì)應(yīng)的坐標(biāo)(-

b,0)是直線y=ax+b與x軸的交點(diǎn)坐標(biāo),反過(guò)來(lái)也成立;直線ay=ax+b在x軸的上方,也就是函數(shù)的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x軸的下方也就是函數(shù)的值小于零,x的值是不等式ax+b

(4)將k、b的之帶入y=kx+b,得到函數(shù)表達(dá)式。

例如:已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3)求此一次函數(shù)的關(guān)系式.解:設(shè)一次函數(shù)的關(guān)系式為y=kx+b(k≠0),由題意可知,

12kb,k4,4,解3kb3∴此函數(shù)的關(guān)系式為y=3x53.b53.

六知識(shí)規(guī)律小結(jié)

1.常數(shù)k,b對(duì)直線y=kx+b(k≠0)位置的影響.①當(dāng)b>0時(shí),直線與y軸的正半軸相交;當(dāng)b=0時(shí),直線經(jīng)過(guò)原點(diǎn);

當(dāng)b0時(shí),直線與y軸的負(fù)半軸相交.②當(dāng)k,b異號(hào)時(shí),即-bk>0時(shí),直線與x軸正半軸相交;當(dāng)b=0時(shí),即-

bk=0時(shí),直線經(jīng)過(guò)原點(diǎn);當(dāng)k,b同號(hào)時(shí),即-bk0時(shí),直線與x軸負(fù)半軸相交.

③當(dāng)k>O,b>O時(shí),圖象經(jīng)過(guò)第一、二、三象限;當(dāng)k>0,b=0時(shí),圖象經(jīng)過(guò)第一、三象限;

當(dāng)b>O,b<O時(shí),圖象經(jīng)過(guò)第一、三、四象限;當(dāng)kO,b>0時(shí),圖象經(jīng)過(guò)第一、二、四象限;當(dāng)kO,b=0時(shí),圖象經(jīng)過(guò)第二、四象限;

當(dāng)k<O,b<O時(shí),圖象經(jīng)過(guò)第二、三、四象限.

2.直線y=kx+b(k≠0)與直線y=kx(k≠0)的位置關(guān)系.直線y=kx+b(k≠0)平行于直線y=kx(k≠0)

當(dāng)b>0時(shí),把直線y=kx向上平移b個(gè)單位,可得直線y=kx+b;當(dāng)bO時(shí),把直線y=kx向下平移|b|個(gè)單位,可得直線y=kx+b.3.直線b1=k1x+b1與直線y2=k2x+b2(k1≠0,k2≠0)的位置關(guān)系.①k1≠k2y1與y2相交;②k1k2by1與y2相交于y軸上同一點(diǎn)(0,b1)或(0,b2b);

12③k1k2,k1kb1byy2,1與2平行;④2by1與y2重合.

1b2

用心愛(ài)心專(zhuān)心

201*中考復(fù)習(xí)專(zhuān)題二次函數(shù)知識(shí)點(diǎn)總結(jié)

二次函數(shù)知識(shí)點(diǎn):

1.二次函數(shù)的概念:一般地,形如yax2bxc(a,b,c是常數(shù),a0)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類(lèi)似,二次項(xiàng)系數(shù)a0,而b,二c可以為零.次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.⑵a,b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).二次函數(shù)的基本形式

1.二次函數(shù)基本形式:yax2的性質(zhì):

oo

結(jié)論:a的絕對(duì)值越大,拋物線的開(kāi)口越小?偨Y(jié):

a的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸a0向上性質(zhì)0,00,0y軸x0時(shí),y隨x的增大而增大;x0時(shí),y隨x的增大而減。粁0時(shí),y有最小值0.x0時(shí),y隨x的增大而減。粁0時(shí),y隨x的增大而增大;x0時(shí),y有最大值0.a(chǎn)0向下y軸2.yax2c的性質(zhì):

用心愛(ài)心專(zhuān)心

結(jié)論:上加下減。

a的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸a0向上性質(zhì)0,c0,cy軸x0時(shí),y隨x的增大而增大;x0時(shí),y隨x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨x的增大而增大;x0時(shí),y有最大值c.a(chǎn)0總結(jié):

向下y軸3.yaxh的性質(zhì):

2

結(jié)論:左加右減?偨Y(jié):a的符號(hào)a0開(kāi)口方向向上頂點(diǎn)坐標(biāo)對(duì)稱軸X=h性質(zhì)h,0h,0xh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值0.a(chǎn)0

向下X=hxh時(shí),y隨x的增大而減。粁h時(shí),y隨x的增大而增大;xh時(shí),y有最大值0.4.yaxhk的性質(zhì):

2用心愛(ài)心專(zhuān)心

總結(jié):a的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸a0向上性質(zhì)h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減;xh時(shí),y隨x的增大而增大;xh時(shí),y有最大值k.a(chǎn)0向下X=h二次函數(shù)圖象的平移

1.平移步驟:

k;⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k處,具體平移方法如下:⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或下(k0)【或左(h

概括成八個(gè)字“左加右減,上加下減”.

三、二次函數(shù)yaxhk與yax2bxc的比較

請(qǐng)將y2x4x5利用配方的形式配成頂點(diǎn)式。請(qǐng)將yax2bxc配成yaxhk。

222

總結(jié):

從解析式上看,yaxhk與yax2bxc是兩種不同的表達(dá)形式,后者通過(guò)配b4acb2b4acb2方可以得到前者,即yax,其中h,.k2a4a2a4a22

四、二次函數(shù)yax2bxc圖象的畫(huà)法

五點(diǎn)繪圖法:利用配方法將二次函數(shù)yax2bxc化為頂點(diǎn)式y(tǒng)a(xh)2k,確定

其開(kāi)口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),左右對(duì)稱地描點(diǎn)畫(huà)圖.一般我們

c、以及0,c關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)2h,c、選取的五點(diǎn)為:頂點(diǎn)、與y軸的交點(diǎn)0,0,x2,0(若與x軸沒(méi)有交點(diǎn),則取兩組關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)).與x軸的交點(diǎn)x1,畫(huà)草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

用心愛(ài)心專(zhuān)心

五、二次函數(shù)yax2bxc的性質(zhì)

b4acb2b1.當(dāng)a0時(shí),拋物線開(kāi)口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x2a2a2a4acb2時(shí),y有最小值.

4ab4acb2b2.當(dāng)a0時(shí),拋物線開(kāi)口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.當(dāng)

2a4a2axbbb時(shí),y隨x的增大而增大;當(dāng)x時(shí),y隨x的增大而減。划(dāng)x時(shí),y2a2a2a4acb2有最大值.

4a

六、二次函數(shù)解析式的表示方法

1.一般式:yax2bxc(a,b,c為常數(shù),a0);2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫(xiě)

成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

七、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系1.二次項(xiàng)系數(shù)a

二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

⑴當(dāng)a0時(shí),拋物線開(kāi)口向上,a的值越大,開(kāi)口越小,反之a(chǎn)的值越小,開(kāi)口越大;

⑵當(dāng)a0時(shí),拋物線開(kāi)口向下,a的值越小,開(kāi)口越小,反之a(chǎn)的值越大,開(kāi)口越大.

用心愛(ài)心專(zhuān)心

總結(jié)起來(lái),a決定了拋物線開(kāi)口的大小和方向,a的正負(fù)決定開(kāi)口方向,a的大小決定開(kāi)口的大。2.一次項(xiàng)系數(shù)b

在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.⑴在a0的前提下,

b當(dāng)b0時(shí),0,即拋物線的對(duì)稱軸在y軸左側(cè);

2a當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即

b當(dāng)b0時(shí),0,即拋物線的對(duì)稱軸在y軸右側(cè);

2a當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a總結(jié)起來(lái),在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.總結(jié):

3.常數(shù)項(xiàng)c

⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;⑶當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來(lái),c決定了拋物線與y軸交點(diǎn)的位置.總之,只要a,b,c都確定,那么這條拋物線就是唯一確定的.二次函數(shù)解析式的確定:

根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问,才能使解題簡(jiǎn)便.一般來(lái)說(shuō),有如下幾種情況:

1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

二、二次函數(shù)圖象的對(duì)稱

二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)1.關(guān)于x軸對(duì)稱

yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

222.關(guān)于y軸對(duì)稱

用心愛(ài)心專(zhuān)心

yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

223.關(guān)于原點(diǎn)對(duì)稱

yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;4.關(guān)于頂點(diǎn)對(duì)稱

b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

2a2222yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.

22n對(duì)稱5.關(guān)于點(diǎn)m,yaxhk關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nk

22根據(jù)對(duì)稱的性質(zhì),顯然無(wú)論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適

的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開(kāi)口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開(kāi)口方向,然后再寫(xiě)出其對(duì)稱拋物線的表達(dá)式.

二次函數(shù)與一元二次方程:

1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

0,Bx2,0(x1x2),①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,其中的x1,x2是一元二次方程ax2bxc0a0的兩根.這兩點(diǎn)間的距離b24acABx2x1.a②當(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

③當(dāng)0時(shí),圖象與x軸沒(méi)有交點(diǎn).

1"當(dāng)a0時(shí),圖象落在x軸的上方,無(wú)論x為任何實(shí)數(shù),都有y0;

2"當(dāng)a0時(shí),圖象落在x軸的下方,無(wú)論x為任何實(shí)數(shù),都有y0.2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

3.二次函數(shù)常用解題方法總結(jié):

⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

⑵求二次函數(shù)的最大(。┲敌枰门浞椒▽⒍魏瘮(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

用心愛(ài)心專(zhuān)心

⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,

b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母

x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:0拋物線與x軸有兩個(gè)交點(diǎn)二次三項(xiàng)式的值可正、可零、可負(fù)一元二次方程有兩個(gè)不相等實(shí)根0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無(wú)交點(diǎn)二次三項(xiàng)式的值為非負(fù)一元二次方程有兩個(gè)相等的實(shí)數(shù)根二次三項(xiàng)式的值恒為正一元二次方程無(wú)實(shí)數(shù)根.0

圖像參考:

y=2x2y=x2y=x22y=-x22y=-x2y=-2x2

用心愛(ài)心專(zhuān)心

y=3(x+4)2y=3x2y=3(x-2)2y=-2(x+3)2y=-2x2y=-2(x-3)2

用心愛(ài)心專(zhuān)心y=2x2+2y=2x2y=2x2-4用心

y=2x2y=2(x-4)2y=2(x-4)2-3愛(ài)心專(zhuān)心

友情提示:本文中關(guān)于《中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


中考復(fù)習(xí):一次函數(shù)知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/714197.html