久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 計劃總結(jié) > 工作總結(jié) > 一次函數(shù)知識歸納總結(jié)

一次函數(shù)知識歸納總結(jié)

網(wǎng)站:公文素材庫 | 時間:2019-05-28 22:36:16 | 移動端:一次函數(shù)知識歸納總結(jié)

一次函數(shù)知識歸納總結(jié)

一次函數(shù)知識歸納總結(jié)一一次函數(shù)和正比例函數(shù)的概念

若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量),特別地,當(dāng)b=0時,稱y是x的正比例函數(shù).例如:y=2x+3,y=-x+2,y=x等都是一次函數(shù),y=x,y=-x都是正比例函數(shù).

【說明】(1)一次函數(shù)的自變量的取值范圍是一切實數(shù),但在實際問題中要根據(jù)函數(shù)的實際意義來確定.

(2)一次函數(shù)y=kx+b(k,b為常數(shù),b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意義相同,即自變量x的次數(shù)為1,自變量x的系數(shù)k必須是不為零的常數(shù),b可為任意常數(shù).(3)當(dāng)b=0,k≠0時,y=kx仍是一次函數(shù).(4)當(dāng)b=0,k=0時,它不是一次函數(shù).

二正比例函數(shù)y=kx(k≠0)的圖象與性質(zhì):(1)正比例函數(shù)y=kx的圖象是經(jīng)過原點的一條直線;畫正比例函數(shù)y=kx的圖象時,只要描出點(0,0),(1,k)即可.

(2)增減性①當(dāng)k>0時,圖象經(jīng)過第一、三象限,y隨x的增大而增大;②當(dāng)k<0時,圖象經(jīng)過第二、四象限,y隨x的增大而減。淮魏瘮(shù)的圖象與性質(zhì):(1)由于一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象是一條直線,所以一次函數(shù)y=kx+b的圖象也稱為直線y=kx+b.由于兩點確定一條直線,因此在今后作一次函數(shù)圖象時,只要描出適合關(guān)系式的兩點,再連成直線即可,一般選取兩個特

b殊點:直線與y軸的交點(0,b),直線與x軸的交點(,0).

k但也不必一定選取這兩個特殊點.

(2)增減性①k>0時,y的值隨x值的增大而增大;②k0時,y的值隨x值的增大而減。3)b的正、負決定直線與y軸交點的位置;①當(dāng)b>0時,直線與y軸交于正半軸上;②當(dāng)b<0時,直線與y軸交于負半軸上;③當(dāng)b=0時,直線經(jīng)過原點,是正比例函數(shù).

(4)由于k,b的符號不同,直線所經(jīng)過的象限也不同;

①當(dāng)k>0,b>0時,直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);

②當(dāng)k>0,b0時,直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限);

③當(dāng)k0,b>0時,直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);

④當(dāng)k0,b0時,直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限).

(5)一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與正比例函數(shù)y=kx(k≠0)的圖象之間的關(guān)系:直線y=kx+b可以看成直線y=kx上下平移b個單位得到的,當(dāng)b0時,向上平移,當(dāng)b0時,向下平移.例如:直線y=x+1可以看作是正比例函數(shù)y=x向上平移一個單位得到的.直線y=x-1可以看作是正比例函數(shù)y=x向下平移一個單

位得到的.

四點P(x0,y0)與直線y=kx+b的圖象的關(guān)系

(1)如果點P(x0,y0)在直線y=kx+b的圖象上,那么x0,y0的值必滿足解析式y(tǒng)=kx+b;

(2)如果x0,y0是滿足函數(shù)解析式的一對對應(yīng)值,那么以x0,y0為坐標(biāo)的點P(x0,y0)必在函數(shù)的圖象上.

例如:點P(1,2)滿足直線y=x+1,即x=1時,y=2,則點P(1,2)在直線y=x+l的圖象上;點P′(2,1)不滿足解析式y(tǒng)=x+1,因為當(dāng)x=2時,y=3,所以點P′(2,1)不在直線y=x+l的圖象上.五正比例函數(shù)及一次函數(shù)表達式的確定:若題目中明確告訴兩個變量之間是一次函數(shù)的關(guān)系(或圖像是直線)就用待定系數(shù)法,有的應(yīng)用題則需根據(jù)題意列出。

先設(shè)待求函數(shù)關(guān)系式(其中含有未知常數(shù)系數(shù)),再根據(jù)條件列出方程(或方程組),求出未知系數(shù),從而得到所求結(jié)果的方法,叫做待定系數(shù)法.其中未知系數(shù)也叫待定系數(shù).例如:函數(shù)y=kx+b中,k,b就是待定系數(shù).

(1)確定正比例函數(shù)及一次函數(shù)表達式的條件:

①由于正比例函數(shù)y=kx(k≠0)中只有一個待定系數(shù)k,故只需一個條件(如一對x,y的值或一個點的坐標(biāo))就可求得k的值.②由于一次函數(shù)y=kx+b(k≠0)中有兩個待定系數(shù)k,b,需要兩個獨立的條件確定兩個關(guān)于k,b的方程,求得k,b的值,這兩個條件通常是兩個點的坐標(biāo)或兩對x,y的值.

(2)用待定系數(shù)法確定一次函數(shù)表達式的一般步驟

①設(shè):根據(jù)題中要求的函數(shù)“設(shè)”關(guān)系式y(tǒng)=kx+b,(其中k,b是未知的常量,且k≠0);

②代:將已知點的坐標(biāo)或x,y的對應(yīng)值代入函數(shù)表達式,得到方程(組),

③求:解這個方程(或方程組),求出待定系數(shù)k,b;

④寫:寫出函數(shù)關(guān)系式(把求得的k,b的值代回到“設(shè)”的關(guān)系式y(tǒng)=kx+b中).

例如:已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3)求此一次函數(shù)的關(guān)系式.

解:設(shè)一次函數(shù)的關(guān)系式為y=kx+b(k≠0),

4k2kb13由題意可知,kb3解得5b345∴此函數(shù)的關(guān)系式為yx.

33六思想方法小結(jié)(1)函數(shù)方法.函數(shù)方法就是用運動、變化的觀點來分析題中的數(shù)量關(guān)系,抽象、升華為函數(shù)的模型,進而解決有關(guān)問題的方法.函數(shù)的實質(zhì)是研究兩個變量之間的對應(yīng)關(guān)系,靈活運用函數(shù)方法可以解決許多數(shù)學(xué)問題.

(2)數(shù)形結(jié)合法.?dāng)?shù)形結(jié)合法是指將數(shù)與形結(jié)合,分析、研究、解決問題的一種思想方法,數(shù)形結(jié)合法在解決與函數(shù)有關(guān)的問題時,能起到事半功倍的作用.

擴展閱讀:初中數(shù)學(xué)一次函數(shù)知識點總結(jié)

一次函數(shù)知識點總結(jié):

一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強。甚至有存在探究題目出現(xiàn)。主要考察內(nèi)容:①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。②會根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。③能用一次函數(shù)解決實際問題。④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。突破方法:①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。②運用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。③掌握用待定系數(shù)法球一次函數(shù)解析式。④做一些綜合題的訓(xùn)練,提高分析問題的能力。

函數(shù)性質(zhì):

1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

2.當(dāng)x=0時,b為函數(shù)在y軸上的點,坐標(biāo)為(0,b)。

3當(dāng)b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

4.在兩個一次函數(shù)表達式中:

當(dāng)兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

1.作法與圖形:通過如下3個步驟:(1)列表.

(2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。

正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).

2.性質(zhì):

(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。

3.函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關(guān)系。

4.k,b與函數(shù)圖像所在象限:

y=kx時(即b等于0,y與x成正比例):

當(dāng)k>0時,直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

中考要求

1.經(jīng)歷函數(shù)、一次函數(shù)等概念的抽象概括過程,體會函數(shù)及變量思想,進一步發(fā)展抽象思維能力;經(jīng)歷一次函

數(shù)的圖象及其性質(zhì)的探索過程,在合作與交流活動中發(fā)展合作意識和能力.

2.經(jīng)歷利用一次函數(shù)及其圖象解決實際問題的過程,發(fā)展數(shù)學(xué)應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識別與應(yīng)用過程,發(fā)展形象思維能力.

3.初步理解一次函數(shù)的概念;理解一次函數(shù)及其圖象的有關(guān)性質(zhì);初步體會方程和函數(shù)的關(guān)系.

4.能根據(jù)所給信息確定一次函數(shù)表達式;會作一次函數(shù)的圖象,并利用它們解決簡單的實際問題.中考熱點

一次函數(shù)知識是每年中考的重點知識,是每卷必考的主要內(nèi)容.本知識點主要考查一次函數(shù)的圖象、性質(zhì)及應(yīng)用,這些知識能考查考生綜合能力、解決實際問題的能力.因此,一次函數(shù)的實際應(yīng)用是中考的熱點,和幾何、方程所組成的綜合題是中考的熱點問題.中考命題趨勢及復(fù)習(xí)對策

一次函數(shù)是數(shù)學(xué)中重要內(nèi)容之一,題量約占全部試題的5%~10%,分值約占總分的5%~

10%,題型既有低檔的填空題和選擇題,又有中檔的解答題,更有大量的綜合題,近幾年中考試卷中還出現(xiàn)了設(shè)計新穎、貼近生活、反映時代特征的閱讀理解題、開放探索題、函數(shù)應(yīng)用題,這部分試題包括了初中代數(shù)的所有數(shù)學(xué)思想和方法,全面地考查計算能力,邏輯思維能力、空間想象能力和創(chuàng)造能力.

針對中考命題趨勢,在復(fù)習(xí)時應(yīng)先理解一次函數(shù)概念.掌握其性質(zhì)和圖象,而且還要注重一次函數(shù)實際應(yīng)用的練習(xí).

復(fù)習(xí)要點

一次函數(shù)的圖象和性質(zhì)

正比例函數(shù)的圖象和性質(zhì)

考點講析

1.一次函數(shù)的意義及其圖象和性質(zhì)

⑴.一次函數(shù):若兩個變量x、y間的關(guān)系式可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一

次函數(shù)(x是自變量,y是因變量〕特別地,當(dāng)b=0時,稱y是x的正比例函數(shù).

⑵.一次函數(shù)的圖象:一次函數(shù)y=kx+b的圖象是經(jīng)過點(0,b),(-,0)的一條直線,正比例函數(shù)y=kx的圖

象是經(jīng)過原點(0,0)的一條直線,如下表所示.

⑶.一次函數(shù)的性質(zhì):y=kx+b(k、b為常數(shù),k≠0)當(dāng)k>0時,y的值隨x的值增大而增大;當(dāng)k<0時,y的值隨x值的增大而減。

⑷.直線y=kx+b(k、b為常數(shù),k≠0)時在坐標(biāo)平面內(nèi)的位置與k在的關(guān)系.①②③④

直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限);直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限);

2.一次函數(shù)表達式的求法

⑴.待定系數(shù)法:先設(shè)出式子中的未知系數(shù),再根據(jù)條件列議程或議程組求出未知系數(shù),從而寫出這個式子的方法,叫做待定系數(shù)法,其中的未知系數(shù)也稱為待定系數(shù)。

⑵.用待定系數(shù)法求出函數(shù)表殼式的一般步驟:⑴寫出函數(shù)表達式的一般形式;⑵把已知條件(自變量與函數(shù)的對應(yīng)值)公共秩序函數(shù)表達式中,得到關(guān)于待定系數(shù)的議程或議程組;⑶解方程(組)求出待定系數(shù)的值,從而寫出函數(shù)的表達式。

⑶.一次函數(shù)表達式的求法:確定一次函數(shù)表達式常用待定系數(shù)法,其中確定正比例函數(shù)表達式,只需一對x與y的值,確定一次函數(shù)表達式,需要兩對x與y的值。

友情提示:本文中關(guān)于《一次函數(shù)知識歸納總結(jié)》給出的范例僅供您參考拓展思維使用,一次函數(shù)知識歸納總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


一次函數(shù)知識歸納總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/628135.html