久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 計劃總結(jié) > 工作總結(jié) > 高中數(shù)學(xué)選修4-4知識點總結(jié)

高中數(shù)學(xué)選修4-4知識點總結(jié)

網(wǎng)站:公文素材庫 | 時間:2019-05-28 21:01:50 | 移動端:高中數(shù)學(xué)選修4-4知識點總結(jié)

高中數(shù)學(xué)選修4-4知識點總結(jié)

選修4-4數(shù)學(xué)知識點

一、選考內(nèi)容《坐標系與參數(shù)方程》高考考試大綱要求:

1.坐標系:

①理解坐標系的作用.

②了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況.

③能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區(qū)別,能進行極坐標和直角坐標的互化.

④能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標系的意義.

2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.

②能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.

二、知識歸納總結(jié):

xx,(0),1.伸縮變換:設(shè)點P(x,y)是平面直角坐標系中的任意一點,在變換:yy,(0).的作用下,點P(x,y)對應(yīng)到點P(x,y),稱為平面直角坐標系中的坐標伸縮變換,簡

稱伸縮變換。

2.極坐標系的概念:在平面內(nèi)取一個定點O,叫做極點;自極點O引一條射線Ox叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標系。

3.點M的極坐標:設(shè)M是平面內(nèi)一點,極點O與點M的距離|OM|叫做點M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的xOM叫做點M的極角,記為。有序數(shù)對(,)叫做點M的極坐標,記為M(,).

極坐標(,)與(,2k)(kZ)表示同一個點。極點O的坐標為(0,)(R).4.若0,則0,規(guī)定點(,)與點(,)關(guān)于極點對稱,即(,)與(,)表示同一點。

如果規(guī)定0,02,那么除極點外,平面內(nèi)的點可用唯一的極坐標(,)表示;同時,極坐標(,)表示的點也是唯一確定的。5.極坐標與直角坐標的互化:2x2y2,xcos,

y

ysin,tan(x0)x

6。圓的極坐標方程:

在極坐標系中,以極點為圓心,r為半徑的圓的極坐標方程是r;在極坐標系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標方程是2acos;在極坐標系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標方程是2asin;

7.在極坐標系中,(0)表示以極點為起點的一條射線;(R)表示過極點的一條直線.

在極坐標系中,過點A(a,0)(a0),且垂直于極軸的直線l的極坐標方程是cosa.8.參數(shù)方程的概念:在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數(shù)txf(t),并且對于t的每一個允許值,由這個方程所確定的點M(x,y)都在這條

yg(t),曲線上,那么這個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),

的函數(shù)簡稱參數(shù)。

相對于參數(shù)方程而言,直接給出點的坐標間關(guān)系的方程叫做普通方程。

xarcos,(為參數(shù)).9.圓(xa)(yb)r的參數(shù)方程可表示為ybrsin.xacos,x2y2(為參數(shù)).橢圓221(ab0)的參數(shù)方程可表示為abybsin.x2px2,2(t為參數(shù)).拋物線y2px的參數(shù)方程可表示為y2pt.xxotcos,經(jīng)過點MO(xo,yo),傾斜角為的直線l的參數(shù)方程可表示為(t為

yyotsin.222參數(shù)).

10.在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.

擴展閱讀:高中數(shù)學(xué)選修4-4知識點歸納

高中數(shù)學(xué)選修4-4知識點總結(jié)

一、選考內(nèi)容《坐標系與參數(shù)方程》高考考試大綱要求:

1.坐標系:

①理解坐標系的作用.

②了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況.

③能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區(qū)別,能進行極坐標和直角坐標的互化.

④能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標系的意義.

2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.②能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.二、知識歸納總結(jié):

1.伸縮變換:設(shè)點P(x,y)是平面直角坐標系中的任意一點,在變換:xx,(0),yy,(0).的作用下,

點P(x,y)對應(yīng)到點P(x,y),稱為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換。2.極坐標系的概念:在平面內(nèi)取一個定點O,叫做極點;自極點O引一條射線Ox叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標系。

3.點M的極坐標:設(shè)M是平面內(nèi)一點,極點O與點M的距離|OM|叫做點M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的xOM叫做點M的極角,記為。有序數(shù)對(,)叫做點M的極坐標,記為M(,).

極坐標(,)與(,2k)(kZ)表示同一個點。極點O的坐標為(0,)(R).

4.若0,則0,規(guī)定點(,)與點(,)關(guān)于極點對稱,即(,)與(,)表示同一點。

如果規(guī)定0,02,那么除極點外,平面內(nèi)的點可用唯一的極坐標(,)表示;同時,極坐標(,)表示的點也是唯一確定的。

2xy,22xcos,tanyx(x0)5.極坐標與直角坐標的互

6。圓的極坐標方程:

ysin,化:

-1-

在極坐標系中,以極點為圓心,r為半徑的圓的極坐標方程是r;

在極坐標系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標方程是2acos;在極坐標系中,以C(a,)(a0)為圓心,a為半徑的圓的極坐標方程是2asin;

27.在極坐標系中,(0)表示以極點為起點的一條射線;(R)表示過極點的一條直線.

在極坐標系中,過點A(a,0)(a0),且垂直于極軸的直線l的極坐標方程是cosa.

8.參數(shù)方程的概念:在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數(shù)t的函數(shù)

xf(t),并且對于t的每一個允許值,由這個方程所確定的點M(x,y)yg(t),都在這條曲線上,那么這

個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點的坐標間關(guān)系的方程叫做普通方程。9.圓(xa)2(yb)2r2的參數(shù)方程可表示為xa22xarcos,ybrsin.(為參數(shù)).

橢圓

yb22xacos,(為參數(shù)).1(ab0)的參數(shù)方程可表示為ybsin.拋物線y2x2px2,(t為參數(shù)).2px的參數(shù)方程可表示為y2pt.(xo,yo),傾斜角為O經(jīng)過點Mxxotcos,l的直線的參數(shù)方程可表示為(tyytsin.o為參數(shù)).

10.在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.

友情提示:本文中關(guān)于《高中數(shù)學(xué)選修4-4知識點總結(jié)》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)選修4-4知識點總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


高中數(shù)學(xué)選修4-4知識點總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/619806.html