久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 九年級上冊數學知識點總結

九年級上冊數學知識點總結

網站:公文素材庫 | 時間:2019-05-27 20:48:17 | 移動端:九年級上冊數學知識點總結

九年級上冊數學知識點總結

九年級上冊知識點

第一單元二次根式

1、二次根式

式子a(a0)叫做二次根式,二次根式必須滿足:含有二次根號“必須是非負數。

2、最簡二次根式

若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。

化二次根式為最簡二次根式的方法和步驟:

(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡。

(2)如果被開方數是整數或整式,先將他們分解因數或因式,然后把能開得盡方的因數或因式開出來。

3、同類二次根式

幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式。

4、二次根式的性質(1)(a)2a(a0)

a(a0)

(2)aaa(a0)

(3)ab2”;被開方數a

ab(a0,b0)

(4)

aa(a0,b0)bb5、二次根式混合運算

二次根式的混合運算與實數中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。第二單元一元二次方程

一、一元二次方程

1、一元二次方程

含有一個未知數,并且未知數的最高次數是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式

ax2bxc0(a0),它的特征是:等式左邊十一個關于未知數x的二次多項式,

等式右邊是零,其中ax叫做二次項,a叫做二次項系數;bx叫做一次項,b叫做一次項系數;c叫做常數項。

二、一元二次方程的解法

1、直接開平方法

利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如(xa)2b的一元二次方程。根據平方根的定義可知,xa是b的平方根,當b0時,xab,xab,當b一元二次方程ax2bxc0(a0)中,b4ac叫做一元二次方程

2ax2bxc0(a0)的根的判別式,通常用“”來表示,即b24ac

四、一元二次方程根與系數的關系

如果方程ax2bxc0(a0)的兩個實數根是x1,x2,那么x1x2b,ax1x2c。也就是說,對于任何一個有實數根的一元二次方程,兩根之和等于方程的一次a項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商。

擴展閱讀:北師大版九年級數學上冊知識點總結

九(上)數學知識點答案

第一章證明(一)

1、你能證明它嗎?

(1)三角形全等的性質及判定

全等三角形的對應邊相等,對應角也相等判定:SSS、SAS、ASA、AAS、

(2)等腰三角形的判定、性質及推論

性質:等腰三角形的兩個底角相等(等邊對等角)

判定:有兩個角相等的三角形是等腰三角形(等角對等邊)

推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)(3)等邊三角形的性質及判定定理

性質定理:等邊三角形的三個角都相等,并且每個角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質;等邊三角形是軸對稱圖形,有3條對稱軸。

判定定理:有一個角是60度的等腰三角形是等邊三角形。或者三個角都相等的三角形是等邊三角形。

(4)含30度的直角三角形的邊的性質

定理:在直角三角形中,如果一個銳角等于30度,那么它所對的直角邊等于斜邊的一半。2、直角三角形

(1)勾股定理及其逆定理

定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。

逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。(2)命題包括已知和結論兩部分;逆命題是將倒是的已知和結論交換;正確的逆命題就是逆定理。

(3)直角三角形全等的判定定理

定理:斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)3、線段的垂直平分線

(1)線段垂直平分線的性質及判定

性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。

判定:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上。(2)三角形三邊的垂直平分線的性質

三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等。

(3)如何用尺規(guī)作圖法作線段的垂直平分線

分別以線段的兩個端點A、B為圓心,以大于AB的一半長為半徑作弧,兩弧交于點M、N;作直線MN,則直線MN就是線段AB的垂直平分線。4、角平分線

(1)角平分線的性質及判定定理

性質:角平分線上的點到這個角的兩邊的距離相等;

判定:在一個角的內部,且到角的兩邊的距離相等的點,在這個角的平分線上。(2)三角形三條角平分線的性質定理

性質:三角形的三條角平分線相交于一點,并且這一點到三條邊的距離相等。(3)如何用尺規(guī)作圖法作出角平分線

第二章一元二次方程

1、花邊有多寬

(1)整式方程及一元二次方程的概念

整式方程:方程兩邊都是關于未知數的整式;

一元二次方程:只含有一個未知數x的整式方程,并且都可以化作ax+bx+c=0(a,b,c為常數,a≠0)的形式。

(2)一元二次方程的一般式及各系數含義

2

一般式:ax+bx+c=0(a,b,c為常數,a≠0),其中,a是二次項系數,b是一次項系數,c是常數項。

2、配方法

(1)直接開平方法的定義

利用平方根的定義直接開平方求一元二次方程的解的方法叫直接開平方法。(2)配方法的步驟和方法

一、移項,把方程的常數項移到等號右邊;二、配,方程兩邊都加上一次項系數的一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;三、直接用開平方法求出它的解。3、公式法

(1)求根公式b-4ac≥0時,x=

22

bb4ac2a2

(2)求一元二次方程的一般式及各系數的含義

一、將方程化為一元二次方程的一般ax2+bx+c=0(a,b,c為常數,a≠0);二、計算b2-4ac的值,當b2-4ac≥0時,方程有實數根,否則方程無實數根;三、代入求根公式,求出方程的根;四、寫出方程的兩個根。4、分解因式法

(1)分解因式的概念

當一元二次方程的一邊為0,而另一邊易于分解成兩個一次因式的乘積時,根據ab=0,那么a=0或b=0,這種解一元二次方程的方法稱為分解因式。(2)分解因式法解一元二次方程的一般步驟

一、將方程右邊化為零;二、將方程左邊分解為兩個一次因式的乘積;三、設每一個因式分別為0,得到兩個一元二次方程;四、解這兩個一元二次方程,它們的解就是原方程的解。5、為什么是0.618(1)什么叫黃金比

線段AB上一點C分線段AB成兩條線段AC,BC,若黃金分割點,其中

ACABACAB=

BCAC,則C點叫線段AB的

叫黃金比,其值為0.618。

(2)列一元二次方程解應用題的一般步驟

一、審題;二、設求知數;三、列代數式;四、列方程;五、解方程;六、檢驗;七、答

第三章證明(三)

1、平行四邊行

(1)平行四邊形的定義、性質及判定定義:兩組對邊分別平行的四邊形叫平行四邊形

性質:平行四邊形的對邊分別平行;平行四邊形的對邊分別相等;平行四邊形的對角分別相等;平行四邊形的對角線互相平分。判定:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊行。(2)等腰梯形的性質及判定

性質:等腰梯形在同一底上的兩個角相等;等腰梯形的兩條對角線相等。

判定:同一底上的兩個角相等的梯形是等腰梯形;對角線相等的梯形是等腰梯形。(3)三角形中位線定義及性質

定義:連接三角形兩邊中點的線段叫做三角形的中位線。性質:三角形的中位線平行于第三邊,且等于第三邊的一半。2、特殊平行四邊形

(1)矩形、菱形、正方形、直角三角形的性質及判定

第四章視圖與投影

1、視圖

(1)三視圖的種類及三種視圖之間的關系三視圖有主視圖、左視圖和俯視圖;三種視圖間的關系:主、俯長對正;主、左高平齊;俯、左寬相等;(2)會畫圓柱、圓錐、球的三視圖

2、太陽光與影子

(1)投影與平行投影的含義、平行投影的性質

一般地,用光線照射物體,在某個平面上得到的影子叫做投影;由平行光線形成的投影是平行投影。

平行投影的性質:物體上的點以及影子上的對應點的連線互相平行;當物體與投影面平行時,所形成的影子與物體全等;同一時刻,在平行光線下,互相平行的物體的高度與影子長度的比值相等。

(2)物體影長的變化規(guī)律,會將影長與相似結合起來進行計算

在太陽光的照射下,不同時刻,物體影子的長短也不一樣,早晚影子長,中午影子短。(3)平行投影與視圖之間的關系

視圖實際上就是該物體在某一平行光線下的投影。3、燈光與影子

(1)中心投影的概念及應用,區(qū)別平行投影與中心投影從一點發(fā)出的光線形成的投影稱為中心投影。(2)視點、視線與盲區(qū)的概念

眼睛的位置稱為視點;由視點發(fā)出的線稱為視線;眼睛看不到的地方稱為盲區(qū)。

第五章反比例函數

1、反比例函數

(1)反比例函數的概念

一般地,如果兩個變量x,y之間的關系可以表示成y=函數。反比例函數的自變量x不能為0。(2)掌握求反比例函數的解析式的方法

將一組x,y的值代入解析式中確定k的值即可。

kx的形式,那么稱y是x的反比例2、反比例函數的圖象與性質(1)反比例函數圖象的畫法

一般采用描點法:先列表,再描點,再連線。

(2)反比例函數的圖象及性質,其表達式與圖象的關系,函數值大小的比較(表5-1)3、反比例函數的應用

(1)用反比例函數解決實際問題的一般思路

1、根據問題情境,設出所求的反比例函數表達式;

2、由問題中的已知數據,代入所求表達式,列出方程(或方程組),求出方程的解,確定出待定系數的值,從而確定函數表達式;3、根據函數表達式,去解決實際問題。

(2)反比例函數與正比例函數的區(qū)別及綜合應用(表5-1)

表5-1

友情提示:本文中關于《九年級上冊數學知識點總結》給出的范例僅供您參考拓展思維使用,九年級上冊數學知識點總結:該篇文章建議您自主創(chuàng)作。

來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。


九年級上冊數學知識點總結》由互聯(lián)網用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/480968.html
相關文章