久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 中心極限定理證明

中心極限定理證明

網(wǎng)站:公文素材庫 | 時間:2019-05-22 10:59:42 | 移動端:中心極限定理證明
第一篇:中心極限定理證明

中心極限定理證明

一、例子

高爾頓釘板試驗(yàn).

圖中每一個黑點(diǎn)表示釘在板上的一顆釘子.每排釘子等距排列,下一排的每個釘子恰在上一排兩相鄰釘子之間.假設(shè)有排釘子,從入口中處放入小圓珠.由于釘板斜放,珠子在下落過程中碰到釘子后以的概率滾向左邊,也以的概率滾向右邊.如果較大,可以看到許多珠子從處滾到釘板底端的格子的情形如圖所示,堆成的曲線近似于正態(tài)分布.

如果定義:當(dāng)?shù)诖闻龅结斪雍鬂L向右邊,令;當(dāng)?shù)诖闻龅结斪雍鬂L向左邊,令.則是獨(dú)立的,且

那么由圖形知小珠最后的位置的分布接近正態(tài).可以想象,當(dāng)越來越大時接近程度越好.由于時,.因此,顯然應(yīng)考慮的是的極限分布.歷史上德莫佛第一個證明了二項(xiàng)分布的極限是正態(tài)分布.研究極限分布為正態(tài)分布的極限定理稱為中心極限定理.

二、中心極限定理

設(shè)是獨(dú)立隨機(jī)變量序列,假設(shè)存在,若對于任意的,成立

稱服從中心極限定理.

設(shè)服從中心極限定理,則服從中心極限定理,其中為數(shù)列.

解:服從中心極限定理,則表明

其中.由于,因此

故服從中心極限定理.

三、德莫佛-拉普拉斯中心極限定理

在重貝努里試驗(yàn)中,事件在每次試驗(yàn)中出現(xiàn)的概率為為次試驗(yàn)中事件出現(xiàn)的次數(shù),則

用頻率估計(jì)概率時的誤差估計(jì).

由德莫佛—拉普拉斯極限定理,

由此即得

第一類問題是已知,求,這只需查表即可.

第二類問題是已知,要使不小于某定值,應(yīng)至少做多少次試驗(yàn)?這時利用求出最小的.

第三類問題是已知,求.

解法如下:先找,使得.那么,即.若未知,則利用,可得如下估計(jì):.

拋擲一枚均勻的骰子,為了至少有0.95的把握使出現(xiàn)六點(diǎn)的概率與之差不超過0.01,問需要拋擲多少次?

解:由例4中的第二類問題的結(jié)論,.即.查表得.將代入,便得.由此可見,利用比利用契比曉夫不等式要準(zhǔn)確得多.

已知在重貝努里試驗(yàn)中,事件在每次試驗(yàn)中出現(xiàn)的概率為為次試驗(yàn)中事件出現(xiàn)的次數(shù),則服從二項(xiàng)分布:

的隨機(jī)變量.求.

解:

因?yàn)楹艽?于是

所以

利用標(biāo)準(zhǔn)正態(tài)分布表,就可以求出的值.

某單位內(nèi)部有260架電話分機(jī),每個分機(jī)有0.04的時間要用外線通話,可以認(rèn)為各個電話分機(jī)用不用外線是是相互獨(dú)立的,問總機(jī)要備有多少條外線才能以0.95的把握保證各個分機(jī)在使用外線時不必等候.

解:以表示第個分機(jī)用不用外線,若使用,則令;否則令.則.

如果260架電話分機(jī)同時要求使用外線的分機(jī)數(shù)為,顯然有.由題意得,

查表得,,故取.于是

取最接近的整數(shù),所以總機(jī)至少有16條外線,才能有0.95以上的把握保證各個分機(jī)在使用外線時不必等候.

根據(jù)孟德爾遺傳理論,紅黃兩種番茄雜交第二代結(jié)紅果植株和結(jié)黃果植株的比率為3:1,現(xiàn)在種植雜交種400株,試求結(jié)黃果植株介于83和117之間的概率.

解:將觀察一株雜交種的果實(shí)顏色看作是一次試驗(yàn),并假定各次試驗(yàn)是獨(dú)立的.在400株雜交種中結(jié)黃果的株數(shù)記為,則.

由德莫佛—拉普拉斯極限定理,有

其中,即有

四、林德貝格-勒維中心極限定理

若是獨(dú)立同分布的隨機(jī)變量序列,假設(shè),則有

證明:設(shè)的特征函數(shù)為,則

的特征函數(shù)為

又因?yàn)?所以

于是特征函數(shù)的展開式

從而對任意固定的,有

而是分布的特征函數(shù).因此,

成立.

在數(shù)值計(jì)算時,數(shù)用一定位的小數(shù)來近似,誤差.設(shè)是用四舍五入法得到的小數(shù)點(diǎn)后五位的數(shù),這時相應(yīng)的誤差可以看作是上的均勻分布.

設(shè)有個數(shù),它們的近似數(shù)分別是,.,.令

用代替的誤差總和.由林德貝格——勒維定理,

以,上式右端為0.997,即以0.997的概率有

設(shè)為獨(dú)立同分布的隨機(jī)變量序列,且互相獨(dú)立,其中,證明:的分布函數(shù)弱收斂于.

證明:為獨(dú)立同分布的隨機(jī)變量序列,且互相獨(dú)立,所以仍是獨(dú)立同分布的隨機(jī)變量序列,易知有

由林德貝格——勒維中心極限定理,知的分布函數(shù)弱收斂于,結(jié)論得證.

作業(yè):

p222ex32,33,34,35

五、林德貝爾格條件

設(shè)為獨(dú)立隨機(jī)變量序列,又

令,對于標(biāo)準(zhǔn)化了的獨(dú)立隨機(jī)變量和

的分布

當(dāng)時,是否會收斂于分布?

除以外,其余的均恒等于零,于是.這時就是的分布函數(shù).如果不是正態(tài)分布,那么取極限后,分布的極限也就不會是正態(tài)分布了.因而,為了使得成立,還應(yīng)該對隨機(jī)變量序列加上一些條件.從例題中看出,除以外,其余的均恒等于零,在和式中,只有一項(xiàng)是起突出作用.由此認(rèn)為,在一般情形下,要使得收斂于分布,在的所有加項(xiàng)中不應(yīng)該有這種起突出作用的加項(xiàng).因?yàn)榭紤]加項(xiàng)個數(shù)的情況,也就意味著它們都要“均勻地斜.

設(shè)是獨(dú)立隨機(jī)變量序列,又,,這時

(1)若是連續(xù)型隨機(jī)變量,密度函數(shù)為,如果對任意的,有

(2)若是離散型隨機(jī)變量,的分布列為

如果對于任意的,有

則稱滿足林德貝爾格條件.

以連續(xù)型情形為例,驗(yàn)證:林德貝爾格條件保證每個加項(xiàng)是“均勻地斜.

證明:令,則

于是

從而對任意的,若林德貝爾格條件成立,就有

這個關(guān)系式表明,的每一個加項(xiàng)中最大的項(xiàng)大于的概率要小于零,這就意味著所有加項(xiàng)是“均勻地斜.

六、費(fèi)勒條件

設(shè)是獨(dú)立隨機(jī)變量序列,又,,稱條件為費(fèi)勒條件.

林德貝爾格證明了林德貝爾格條件是中心極限定理成立的充分條件,但不是必要條件.費(fèi)勒指出若費(fèi)勒條件得到滿足,則林德貝爾格條件也是中心極限定理成立的必要條件.

七、林德貝爾格-費(fèi)勒中心極限定理

引理1對及任意的,

證明:記,設(shè),由于

因此,,其次,對,

用歸納法即得.

由于,因此,對也成立.

引理2對于任意滿足及的復(fù)數(shù),有

證明:顯然

因此,

由歸納法可證結(jié)論成立.

引理3若是特征函數(shù),則也是特征函數(shù),特別地

證明定義隨機(jī)變量

其中相互獨(dú)立,均有特征函數(shù),服從參數(shù)的普哇松分布,且與諸獨(dú)立,不難驗(yàn)證的特征函數(shù)為,由特征函數(shù)的性質(zhì)即知成立.

林德貝爾格-費(fèi)勒定理

定理設(shè)為獨(dú)立隨機(jī)變量序列,又.令,則

(1)

與費(fèi)勒條件成立的充要條件是林德貝爾格條件成立.

證明:(1)準(zhǔn)備部分

(2)

顯然(3)

(4)

以及分別表示的特征函數(shù)與分布函數(shù),表示的分布函數(shù),那么(5)

這時

因此林德貝爾格條件化為:對任意,

(6)

現(xiàn)在開始證明定理.設(shè)是任意固定的實(shí)數(shù).

為證(1)式必須證明

(7)

先證明,在費(fèi)勒條件成立的假定下,(7)與下式是等價(jià)的:

(8)

事實(shí)上,由(3)知,又因?yàn)?/p>

故對一切,

把在原點(diǎn)附近展開,得到

因若費(fèi)勒條件成立,則對任意的,只要充分大,均有

(9)

這時

(10)

對任意的,只要充分小,就可以有

(11)

因此,由引理3,引理2及(10),(11),只要充分大,就有

(12)

因?yàn)榭梢匀我庑?故左邊趨于0,因此,證得(7)與(8)的等價(jià)性.

(2)充分性

先證由林德貝爾格條件可以推出費(fèi)勒條件.事實(shí)上,

(13)

右邊與無關(guān),而且可選得任意小;對選定的,由林德貝爾格條件(6)知道第二式當(dāng)足夠大時,也可以任意地小,這樣,費(fèi)勒條件成立.

其次證明林德貝爾格條件能保證(1)式成立.注意到(3)及(4),可知,

當(dāng)時,

當(dāng)時,

因此

(14)

對任給的,由于的任意性,可選得使,對選定的,用林德貝爾格條件知只要充分大,也可使.因此,已證得了(8),但由于已證過費(fèi)勒條件成立,這時(8)與(7)是等價(jià)的,因而(7)也成立.

(3)必要性

由于(1)成立,因此相應(yīng)的特征函數(shù)應(yīng)滿足(7).但在費(fèi)勒條件成立時,這又推出了(8),因此,

(15)

上述被積函數(shù)的實(shí)部非負(fù),故

而且

(16)

因?yàn)閷θ我獾?可找到,使,這時由(15),(16)可得

故林德貝爾格條件成立.

八、李雅普諾夫定理

設(shè)為獨(dú)立隨機(jī)變量序列,又.令,若存在,使有

則對于任意的,有

第二篇:大數(shù)定理中心極限定理證明

一,大數(shù)定律的證明

二,中心極限定理的證明

第三篇:中心極限定理

5.3中心極限定理

我們曾特別強(qiáng)調(diào)了正態(tài)分布在概率論與數(shù)理統(tǒng)計(jì)中的地位與作用.為什么客觀實(shí)際中許多隨機(jī)變量服從正態(tài)分布?是經(jīng)驗(yàn)猜測還是確有科學(xué)的理論依據(jù),下面我們就來解釋這一問題.

我們已經(jīng)知道,炮彈的彈著點(diǎn)射擊誤差服從正態(tài)分布,我們來分析其原因.要知道誤差是什么樣的隨機(jī)變量,有必要研究一下造成誤差的原因是什么?每次射擊后,炮彈會因?yàn)檎饎佣斐珊芪⑿〉钠顇1,炮彈外形細(xì)小的差別而引起空氣阻力不同而出現(xiàn)的誤差x2,炮彈前進(jìn)時遇到的空氣流的微小擾動而造成的誤差x3,……等等,有許多原因,每種原因引起一個微小的誤差都是隨機(jī)的,而彈著點(diǎn)的總誤差x是許多隨機(jī)誤差的總和,即x=?xk,而且xk之間可以看成是相互獨(dú)立的,因此要討論x的分布就要討論這些相互獨(dú)

k

立的隨機(jī)變量之和的分布.

在概率論中,我們把研究在一定條件下,大量獨(dú)立隨機(jī)變量和的極限分布是正態(tài)分布的那些定理通常叫做中心極限定理.本節(jié)只介紹兩個條件簡單,也較常用的中心極限定理.

定理4(同分布中心極限定理)設(shè)隨機(jī)變量x1,x2,…,xn…相互獨(dú)立,服從同一分布,且具有有限的數(shù)學(xué)期望和方差,e(xk)=?,d(xk)=???(k=1,2,…)則隨機(jī)變量

2?xk-n? k=1

?n的分布函數(shù)對任意的x,滿足

n?? n?? ?xk-n? k=1 ?n?x1 ?2 ?? e-? x t2

2dt

第四篇:中心極限定理應(yīng)用

中心極限定理及其應(yīng)用

【摘要】中心極限定理的產(chǎn)生具有一定的客觀背景,最常見的是德莫佛-拉普拉斯中心極限定理和林德貝格-勒維中心極限定理。它們表明了當(dāng)n充分大時,方差存在的n個獨(dú)立同分布的隨機(jī)變量和近似服從正態(tài)分布,在實(shí)際中的應(yīng)用相當(dāng)廣泛。本文討論了中心極限定理的內(nèi)容、應(yīng)用與意義。

【關(guān)鍵詞】:中心極限定理 正態(tài)分布 隨機(jī)變量

一、概述

概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象、統(tǒng)計(jì)規(guī)律性的學(xué)科。隨機(jī)現(xiàn)象的規(guī)律性只有在相同條件下進(jìn)行大量重復(fù)的實(shí)驗(yàn)才會呈現(xiàn)出來,而研究大量的隨機(jī)現(xiàn)象常常采用極限的形式,由此導(dǎo)致了對極限定理的研究。極限定理的內(nèi)容很廣泛,中心極限定理就是其中非常重要的一部分內(nèi)容。中心極限定理主要描述了在一定條件下,相互獨(dú)立的隨機(jī)變量序列x1、x2、…xn、…的部分和的分布律:當(dāng)n→∞時的極限符合正態(tài)分布。因此中心極限定理這個結(jié)論使正態(tài)分布在數(shù)理統(tǒng)計(jì)中具有很重要的地位,也使得中心極限定理有了廣泛的應(yīng)用。

二、定理及應(yīng)用

1、定理一(林德貝格—勒維定理)

若?

k1,=a,?2,…是一列獨(dú)立同分布的隨機(jī)變量,且e?d?

k=k??x2(?2>0) ,k=1,2,…則有l(wèi)imp(k?1

n????n?na?x)??n

n12???e?t22dt。

當(dāng)n充分大時,??k?1k?na

?n~n(0,1),k?1??nk~n(na,n?) 2

2、定理二(棣莫弗—拉普拉斯中心極限定理)

在n重伯努利試驗(yàn)中,事件a在每次試驗(yàn)中出現(xiàn)的概率為錯誤!未找到引用源。, 錯誤!未

?找到引用源。為n次試驗(yàn)中事件a出現(xiàn)的次數(shù),則limp(n??n?npnpq?x)??2?1x??e?t22dt

其中q?1?p。這個定理可以簡單地說成二項(xiàng)分布漸近正態(tài)分布,因此當(dāng)n充分大時,可

以利用該定理來計(jì)算二項(xiàng)分布的概率。

同分布下中心極限定理的簡單應(yīng)用

獨(dú)立同分布的中心極限定理可應(yīng)用于求隨機(jī)變量之和sn落在某區(qū)間的概率和已知隨機(jī)變量之和sn取值的概率,求隨機(jī)變量的個數(shù)。

例1:設(shè)各零件的重量都是隨機(jī)變量,它們相互獨(dú)立且服從相同的分布,其數(shù)學(xué)期望為0.5kg,均方差為0.1kg,問5000只零件的總重量超過2510kg的概率是多少?

解:設(shè)xi(i=1,2,…,5000)表示第i個零件的重量x1,x2,…,x5000獨(dú)立同分布且e(xi)=0.5,d(xi)=0.12。

由獨(dú)立同分布的中心極限定理可知

[3]

=i-φ(1.414)=1-0.9215

=0.0785

例2:一生產(chǎn)線生產(chǎn)的產(chǎn)品成箱包裝,每箱的重量是隨機(jī)的且同分布,設(shè)每箱平均重50kg,標(biāo)準(zhǔn)差為5kg,若用最大載重為50噸的汽車承運(yùn),每輛車最多可以裝多少箱才能保證不超載的概率大于0.977?

解:設(shè)xi(i=1,2,…,n)是裝運(yùn)第i箱的重量,n為所求箱數(shù)。由條件可把x1,x2,…,xn看作獨(dú)立同分布的隨機(jī)變量,而n箱的總重量為tn=x1+x2+…+xn,是獨(dú)立同分布的隨機(jī)變量之和。

由e(xi)=50、d(xi)=52得:e(tn)=50n,d(tn)=52n

根據(jù)獨(dú)立同分布的中心極限定理:

[3]

即最多可以裝98箱。

例3:報(bào)名聽心理學(xué)課程的學(xué)生人數(shù)k是服從均值為100的泊松分布的隨機(jī)變量,負(fù)責(zé)這門課的教授決定,如果報(bào)名人數(shù)不少于120,就分成兩班,否則就一班講授。問該教授講授兩個班的概率是多少?

分析:該教授講授兩個班的情況出現(xiàn)當(dāng)且僅當(dāng)報(bào)名人數(shù)x不少于120,精確解為p(x≥120)=e-100 100i/i!很難求解,如果利用泊松分布的可加性,想到均值為100的泊松分布隨機(jī)變量等于100個均值為1的獨(dú)立泊松分布隨機(jī)變量之和,即x= xi,其中每個xi具有參數(shù)1的泊松分布,則我們可利用中心極限定理求近似解。 [2]

解:可知e(x)=100,d(x)=100

教授講授兩個班的概率是0.023。

例4:火炮向目標(biāo)不斷地射擊,若每次射中目標(biāo)的概率是0、1。

(1)求在400次射擊中擊中目標(biāo)的次數(shù)在區(qū)間[30,50]內(nèi)的概率。

(2)問最少要射擊多少次才能使擊中目標(biāo)的次數(shù)超過10次的概率不小于0.9?

分析:顯然火炮射擊可看作是伯努利實(shí)驗(yàn)。 [1]即

我們知道,正態(tài)分布可近似于二項(xiàng)分布,而且泊松分布可近似于二項(xiàng)分布,當(dāng)二項(xiàng)分布b(n,p),n較大、p較小時可用泊松分布估計(jì)近似值。如果p接近1,有q=l-p很小,這時也可用泊松分布計(jì)算;但是當(dāng)n較大,p不接近0或1時,再用泊松分布估計(jì)二項(xiàng)分布的概率就不夠精確了,這時應(yīng)采用拉普拉斯定理來計(jì)算。

解:(1)設(shè)在射擊中擊中目標(biāo)的次數(shù)為yn,所求概率(30≤yn<50)等于:

最小正整數(shù)n=147就是所要求的最小射擊數(shù)。

以上例子都是獨(dú)立同分布的隨機(jī)變量,可以用中心極限定理近似估算,但是如果不同分布,中心極限定理是否也成立呢?

李雅普諾夫定理

當(dāng)隨機(jī)變量xi獨(dú)立,但不一定同分布時,中心極限定理也成立。定理3[2](李雅普諾夫定理):

設(shè)x1,x2,…,xn,…為獨(dú)立隨機(jī)變量序列,且e(xn)=an,d(xn)=σn2存在,bn2= σn2(n=1,2,…),若存在δ>0,使得:

也就是說,無論各個隨機(jī)變量xi服

從什么分布,只要滿足李雅普諾夫條件,當(dāng)n很大時,它們的和近似服從正態(tài)分布。 由于在大學(xué)本科階段接觸的不同分布的樣本較少,本文對它的應(yīng)用將不舉例說明。

中心極限定理以嚴(yán)格的數(shù)學(xué)形式闡明了在大樣本條件下,不論總體的分布如何,樣本均值總是近似地服從正態(tài)分布。正是這個結(jié)論使得正態(tài)分布在生活中有著廣泛的應(yīng)用。

四、中心極限定理的意義

首先,中心極限定理的核心內(nèi)容是只要n足夠大,便可以把獨(dú)立同分布的隨機(jī)變量和的標(biāo)準(zhǔn)化當(dāng)作正態(tài)變量,所以可以利用它解決很多實(shí)際問題,同時這還有助于解釋為什么很多自然群體的經(jīng)驗(yàn)頻率呈現(xiàn)出鐘形曲線這一值得注意的事實(shí),從而正態(tài)分布成為概率論中最重要的分布,這就奠定了中心極限定理的首要功績。其次,中心極限定理對于其他學(xué)科都有著重要作用。例如數(shù)理統(tǒng)計(jì)中的參數(shù)(區(qū)間)估計(jì)、假設(shè)檢驗(yàn)、抽樣調(diào)查等;進(jìn)一步,中心極限定理為數(shù)理統(tǒng)計(jì)在統(tǒng)計(jì)學(xué)中的應(yīng)用鋪平了道路,用樣本推斷總體的關(guān)鍵在于掌握樣本特征

值的抽樣分布,而中心極限定理表明只要樣本容量足夠地大,得知未知總體的樣本特征值就近似服從正態(tài)分布。從而,只要采用大量觀察法獲得足夠多的隨機(jī)樣本數(shù)據(jù),幾乎就可以把數(shù)理統(tǒng)計(jì)的全部處理問(更多內(nèi)容請?jiān)L問好范 文網(wǎng)m.weilaioem.comit theorems)

什么是中心極限定理

大數(shù)定律揭示了大量隨機(jī)變量的平均結(jié)果,但沒有涉及到隨機(jī)變量的分布的問題。而中心極限定理說明的是在一定條件下,大量獨(dú)立隨機(jī)變量的平均數(shù)是以正態(tài)分布為極限的。

中心極限定理是概率論中最著名的結(jié)果之一。它提出,大量的獨(dú)立隨機(jī)變量之和具有近似于正態(tài)的分布。因此,它不僅提供了計(jì)算獨(dú)立隨機(jī)變量之和的近似概率的簡單方法,而且有助于解釋為什么有很多自然群體的經(jīng)驗(yàn)頻率呈現(xiàn)出鐘形(即正態(tài))曲線這一事實(shí),因此中心極限定理這個結(jié)論使正態(tài)分布在數(shù)理統(tǒng)計(jì)中具有很重要的地位,也使正態(tài)分布有了廣泛的應(yīng)用。

中心極限定理的表現(xiàn)形式

中心極限定理也有若干個表現(xiàn)形式,這里僅介紹其中四個常用定理:

(一)辛欽中心極限定理

設(shè)隨機(jī)變量相互獨(dú)立,服從同一分布且有有限的數(shù)學(xué)期望a和方差σ2,則

隨機(jī)變量,在n無限增大時,服從參數(shù)為a

和的正態(tài)分布即n→∞時,

將該定理應(yīng)用到抽樣調(diào)查,就有這樣一個結(jié)論:如果抽樣總體的數(shù)學(xué)期望a和方差σ2是有限的,無論總體服從什么分布,從中抽取容量為n的樣本時,只要n足夠大,其樣本平均數(shù)的分布就趨于數(shù)學(xué)期望為a,方差為σ2 / n的正態(tài)分布。

(二)德莫佛——拉普拉斯中心極限定理

設(shè)μn是n次獨(dú)立試驗(yàn)中事件a發(fā)生的次數(shù),事件a在每次試驗(yàn)中發(fā)生的概率為p,則當(dāng)n無限大時,頻率設(shè)μn / n

趨于服從參數(shù)為的正態(tài)分布。即:

該定理是辛欽中心極限定理的特例。在抽樣調(diào)查中,不論總體服從什么分布,只要n充分大,那么頻率就近似服從正態(tài)分布。

(三)李亞普洛夫中心極限定理

設(shè)

差:是一個相互獨(dú)立的隨機(jī)變量序列,它們具有有限的數(shù)學(xué)期望和方

記,如果能選擇這一個正數(shù)δ>0,使當(dāng)n→∞

時,

,則對任意的x有:

該定理的含義是:如果一個量是由大量相互獨(dú)立的隨機(jī)因素影響所造成的,而每一個別因素在總影響中所起的作用不很大,則這個量服從或近似服從正態(tài)分布。

(四)林德貝爾格定理

設(shè)是一個相對獨(dú)立的隨機(jī)變量序列,它們具有有限的數(shù)學(xué)期望和方差 滿足林德貝爾格條件,則當(dāng)n→∞時,對任意的x

,有

中心極限定理案例分析

案例一:中心極限定理在商業(yè)管理中的應(yīng)用

水房擁擠問題:假設(shè)西安郵電學(xué)院新校區(qū)有學(xué)生5000人,只有一個開水房,由于每天傍晚打開水的人較多,經(jīng)常出現(xiàn)同學(xué)排長隊(duì)的現(xiàn)象,為此校學(xué)生會特向后勤集團(tuán)提議增設(shè)水龍頭。假

設(shè)后勤集團(tuán)經(jīng)過調(diào)查,發(fā)現(xiàn)每個學(xué)生在傍晚一般有1%的時間要占用一個水龍頭,現(xiàn)有水龍頭45個,現(xiàn)在總務(wù)處遇到的問題是:

(1)未新裝水龍頭前,擁擠的概率是多少?

(2)至少要裝多少個水龍頭,才能以95%以上的概率保證不擁擠?

解:(1)設(shè)同一時刻,5000個學(xué)生中占用水龍頭的人數(shù)為x,則

x~b(5000,0.01)

擁擠的概率是

有定理2,n=5000,p=0.01,q=0.985

,

即擁擠的概率

p(ζ > 45) = 1 ? 0.2389 = 0.7611

(2)欲求m

,使得

由于

查表

需裝62個水龍頭。

問題的變形:

(3)至少安裝多少個水龍頭,才能以99%以上的概率保證不擁擠?

解:欲求m,使得

查表

即m≥66.4

故需要裝67個水龍頭。

(4)若條件中已有水龍頭數(shù)量改為55個,其余的條件不變,1,2兩問題結(jié)果如何?解:(1)

(2)同上。

(5)若條件中的每個學(xué)生占用由1%提高到1.5%,其余的條件不變,則(1),

(2)兩問題結(jié)果如何?

解:(1)設(shè)同一時刻,5000個學(xué)生中占用水龍頭的人數(shù)為x,則

x-b(5000,0.015)

已知n=5000,p=0.015,q=0.985,np=75

,

擁擠的概率達(dá)

(2)欲求m,使得

查表

即m≥89.14

故需裝90個水龍頭。

中心極限定理以嚴(yán)格的數(shù)學(xué)形式闡明了在大樣本條件下,不論總體的分布如何,樣本的均值總是近似地服從正態(tài)分布。如果一個隨機(jī)變量能夠分解為獨(dú)立同分布的隨機(jī)變量序列之和,則可以直接利用中心極限定理進(jìn)行解決?傊,恰當(dāng)?shù)厥褂弥行臉O限定理解決實(shí)際問題有著極其重要意義。

除小編你為整理的以上范文外,系統(tǒng)還推薦以下相關(guān)范本:

第五章大數(shù)定理及中心極限定理

中心極限定理-第四章練習(xí)題

淺談中心極限定理及其應(yīng)用 論文

4中心極限定理

中心極限定理和概率統(tǒng)計(jì)

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


中心極限定理證明》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/382490.html
相關(guān)文章