久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 公文素材 > 范文素材 > 高二文科復數(shù)小結(jié)

高二文科復數(shù)小結(jié)

網(wǎng)站:公文素材庫 | 時間:2019-05-28 15:10:51 | 移動端:高二文科復數(shù)小結(jié)

高二文科復數(shù)小結(jié)

201*------201*學年高二數(shù)學選修1---1導學案使用時間201*1126班級小組姓名組內(nèi)評價教師評價

復數(shù)復習小結(jié)

學習目標:

1.理解復數(shù)的有關(guān)概念;掌握復數(shù)的代數(shù)表示及向量表示.

2.會運用復數(shù)的分類求出相關(guān)的復數(shù)(實數(shù)、純虛數(shù)、虛數(shù)等)對應的實參數(shù)值.3.能進行復數(shù)的代數(shù)形式的加法、減法、乘法、除法等運算.

教學重點:復數(shù)的有關(guān)概念、運算法則的梳理和具體的應用.教學難點:復數(shù)的知識結(jié)構(gòu)的梳理

一、知識要點:

1.虛數(shù)單位i:(1)它的平方等于-1,即;

(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立2.i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2

=-1的另一個根是-i3.i的周期性:i4n+1=,i4n+2=,i4n+3=,

i4n

=4.復數(shù)的定義:形如的數(shù)叫復數(shù),a叫復數(shù)的,b叫復數(shù)的全體復數(shù)所成的集合叫做復數(shù)集,用字母表示

5.復數(shù)的代數(shù)形式:復數(shù)通常用字母z表示,即zabi(a,bR),把復數(shù)表示成a+bi的形式,

叫做復數(shù)的代數(shù)形式6.復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

對于復數(shù)abi(a,bR),當且僅當時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當時,復數(shù)z=a+bi叫做虛數(shù);當時,z=bi叫做純虛數(shù);當且僅當時,z就是實數(shù)0.

7.復數(shù)集與其它數(shù)集之間的關(guān)系:NZQRC.

8.兩個復數(shù)相等的定義:如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等即:如果a,b,c,d∈R,那么a+bi=c+di

一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小.如果兩個復數(shù)都是實數(shù),就可以比較大小只有當兩個復數(shù)不全是實數(shù)時才不能比較大小

9.復平面、實軸、虛軸:

點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,也叫高斯平面,

x軸叫做,y軸叫做實軸上的點都表示

對于虛軸上的點要除原點外,因為原點對應的有序?qū)崝?shù)對為(0,0),它所確定的復數(shù)是z=0+0i=0

表示是實數(shù).故除了外,虛軸上的點都表示10.復數(shù)z1與z2的和的定義:z1+z2=(a+bi)+(c+di)=11.復數(shù)z1與z2的差的定義:z1-z2=(a+bi)-(c+di)=12.復數(shù)的加法運算滿足交換律:z1+z2=z2+z1.13.復數(shù)的加法運算滿足結(jié)合律:(z1+z2)+z3=z1+(z2+z3)14.乘法運算規(guī)則:設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個復數(shù),那么它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個復數(shù)相乘,類似兩個多項式相乘,在所得的結(jié)果中把i2換成-1,并且把實部與虛部分別合并.兩個復數(shù)的積仍然是一個復數(shù).15.乘法運算律:

(1)z1(z2z3)=(z1z2)z3;(2)z1(z2+z3)=z1z2+z1z3;(3)z1(z2+z3)=z1z2+z1z3.16.除法運算規(guī)則:

(a+bi)÷(c+di)=i.

17.共軛復數(shù):當兩個復數(shù)的實部相等,虛部互為相反數(shù)時,這兩個復數(shù)叫做互為共軛復數(shù)虛部不等于0的兩個共軛復數(shù)也叫做共軛虛數(shù)18.復數(shù)的模:

|z||abi||OZ|a2b2

二、合作探究:

例1對于下列四個命題,正確的是()

①z21,z2,z3∈C,若(z1-z2)2+(z2-z3)=0,則z1=z31②設(shè)z∈C,則z+z∈R的充要條件是|z|=1

③復數(shù)不能比較大小

④z是虛數(shù)的充要條件是z+z∈RA.0個B.1個C.2個D.3個

例2.證明:在復數(shù)范圍內(nèi),方程z2(1i)z(1i)z55i2i(i為虛數(shù)單位)無解.

201*------201*學年高二數(shù)學選修1---1導學案使用時間201*1126班級小組姓名組內(nèi)評價教師評價

例3.實數(shù)m為何值時,復數(shù)zm21i15)im6.

m5(8mm5(1)為實數(shù);(2)為虛數(shù);

(3)為純虛數(shù);

(4)對應點在第二象限.

例4.已知z1i,a,b為實數(shù).(1)若z23z4,求;2(2)若zazbz2z11i,求a,b的值.

例5.已知方程x24xc0(cR)的一個根為x12i,求c的值及方程的另一個根.

]

例6.設(shè)復數(shù)z滿足|z|=2,且(z-a)2=a,求實數(shù)a的值.

三、課堂練習:

1.設(shè)集合I=C={復數(shù)},R={實數(shù)},M={純虛數(shù)},那么A.R∪M=CB.R∩M={0}C.R∪R=C

D.C∩R=M

2.a=0是復數(shù)a+bi(a,b∈R)為純虛數(shù)的A.充分不必要條件B.必要不充分條件C.充分必要條件

D.既不充分又不必要條件

3.若(m2-m)+(m2-3m+2)i是純虛數(shù),則實數(shù)m的值為A.1B.1或2C.0D.-1,1,2

4.若實數(shù)x,y滿足(1+i)x+(1-i)y=2,則xy的值是A.1B.2C.-2D.-3

5.已知復數(shù)z21=a-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分別對應向量OZ1、OZ2(O為原點),若向量Z1Z2對應的復數(shù)為純虛數(shù),求a的值

四、小結(jié):通過系統(tǒng)復習復數(shù)的知識,及例題的訓練,進一步體會數(shù)學轉(zhuǎn)化的思想、方程的思想、數(shù)形結(jié)合思想的運用

擴展閱讀:高二文科復數(shù)小結(jié)

201*------201*學年高二數(shù)學選修1---2導學案編號025使用時間201*0410編制人周榮貴陳慶梅審核人領(lǐng)導簽字班級小組姓名組內(nèi)評價教師評價

復數(shù)復習小結(jié)

學習目標:

1.理解復數(shù)的有關(guān)概念;掌握復數(shù)的代數(shù)表示及向量表示.

2.會運用復數(shù)的分類求出相關(guān)的復數(shù)(實數(shù)、純虛數(shù)、虛數(shù)等)對應的實參數(shù)值.3.能進行復數(shù)的代數(shù)形式的加法、減法、乘法、除法等運算.

教學重點:復數(shù)的有關(guān)概念、運算法則的梳理和具體的應用.教學難點:復數(shù)的知識結(jié)構(gòu)的梳理

一、知識要點:

1.虛數(shù)單位i:(1)它的平方等于-1,即;

(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立2.i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i3.i的周期性:i4n+1=,i4n+2=,i4n+3=,i4n=4.復數(shù)的定義:形如的數(shù)叫復數(shù),a叫復數(shù)的,b叫復數(shù)的全體復數(shù)所成的集合叫做復數(shù)集,用字母表示

5.復數(shù)的代數(shù)形式:復數(shù)通常用字母z表示,即zabi(a,bR),把復數(shù)表示成a+bi形式,叫做復數(shù)的代數(shù)形式6.對于復數(shù)abi(a,bR),當且僅當時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當時,復數(shù)z=a+bi叫做虛數(shù);當時,z=bi叫做純虛數(shù);當且僅當時,z就是實數(shù)0.

7.復數(shù)集與其它數(shù)集之間的關(guān)系:NZQRC.

8.兩個復數(shù)相等的定義:如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等即:如果a,b,c,d∈R,那么a+bi=c+di

一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小.如果兩個復數(shù)都是實數(shù),就可以比較大小只有當兩個復數(shù)不全是實數(shù)時才不能比較大小9.復平面、實軸、虛軸:

點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,也叫高斯平面,

x軸叫做,y軸叫做實軸上的點都表示

對于虛軸上的點要除原點外,因為原點對應的有序?qū)崝?shù)對為(0,0),它所確定的復數(shù)是z=0+0i=0表示是實數(shù).故除了外,虛軸上的點都表示10.復數(shù)z1與z2的和的定義:z1+z2=(a+bi)+(c+di)=

11.復數(shù)z1與z2的差的定義:z1-z2=(a+bi)-(c+di)=12.復數(shù)的加法運算滿足交換律:z1+z2=z2+z1.

13.復數(shù)的加法運算滿足結(jié)合律:(z1+z2)+z3=z1+(z2+z3)14.乘法運算規(guī)則:設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個復數(shù),那么它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個復數(shù)相乘,類似兩個多項式相乘,在所得的結(jié)果中把i2換成-1,并且把實部與虛部分別合并.兩個復數(shù)的積仍然是一個復數(shù).15.乘法運算律:

(1)z1(z2z3)=(z1z2)z3;(2)z1(z2+z3)=z1z2+z1z3;(3)z1(z2+z3)=z1z2+z1z3.16.除法運算規(guī)則:

(a+bi)÷(c+di)=i.

17.共軛復數(shù):當兩個復數(shù)的實部相等,虛部互為相反數(shù)時,這兩個復數(shù)叫做互為共軛復數(shù)虛部不等于0的兩個共軛復數(shù)也叫做共軛虛數(shù)18.復數(shù)的模:

|z||abi||OZ|a2b2二、合作探究:

例1對于下列四個命題,正確的是()

①z1,z2,z3∈C,若(z1-z2)2+(z2-z3)2=0,則z1=z3

②設(shè)z∈C,則z+1z∈R的充要條件是|z|=1

③復數(shù)不能比較大小

④z是虛數(shù)的充要條件是z+z∈RA.0個B.1個C.2個D.3個

例2.若方程x2(m2i)x2mi0至少有一個實數(shù)根,求實數(shù)m的值。

201*------201*學年高二數(shù)學選修1---2導學案編號025使用時間201*0410編制人周榮貴陳慶梅審核人領(lǐng)導簽字班級小組姓名組內(nèi)評價教師評價

例3.實數(shù)m為何值時,復數(shù)zm21m5i(8m15)im6m5.(1)為實數(shù);(2)為虛數(shù);(3)為純虛數(shù);

(4)對應點在第二象限.

例4.已知復數(shù)z滿足z=2,z2的虛部為2.

(1)求z;

(2)設(shè)z,z2,zz2在復平面的對應點分別為A,B,C,求ABC的面積。

例5.已知方程x24xc0(cR)的一個根為x12i,求c的值及方程的另一個根.]

例6.設(shè)復數(shù)z滿足|z|=2,且(z-a)2

=a,求實數(shù)a的值.

三、課堂練習:

1.設(shè)集合I=C={復數(shù)},R={實數(shù)},M={純虛數(shù)},那么()

A.R∪M=C

B.R∩M={0}C.R∪R=C

D.C∩R=M

2.

3i1i的共軛復數(shù)是()A.3232iB.3322iC.3232iD.3232i

3.若(m2-m)+(m2-3m+2)i是純虛數(shù),則實數(shù)m的值為()A.1B.1或2C.0D.-1,1,2

4.若實數(shù)x,y滿足(1+i)x+(1-i)y=2,則xy的值是()A.1B.2C.-2D.-3

5.已知復數(shù)z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分別對應向量OZ1、OZ2(O為原點),若向量Z1Z2對應的復數(shù)為純虛數(shù),求a的值

四、小結(jié):通過系統(tǒng)復習復數(shù)的知識,及例題的訓練,進一步體會數(shù)學轉(zhuǎn)化的思想、方程的思想、數(shù)形結(jié)合思想的運用

友情提示:本文中關(guān)于《高二文科復數(shù)小結(jié)》給出的范例僅供您參考拓展思維使用,高二文科復數(shù)小結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


高二文科復數(shù)小結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/588892.html
相關(guān)文章