初二數(shù)學(xué)下冊知識點(diǎn)總結(jié)
初二期下冊知識點(diǎn)歸納
第一章分式
1分式及其基本性質(zhì)
分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變2分式的運(yùn)算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。(2)分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減3整數(shù)指數(shù)冪的加減乘除法4分式方程及其解法第二章反比例函數(shù)
1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)圖像:雙曲線
表達(dá)式:y=k/x(k不為0)性質(zhì):兩支的增減性相同;2反比例函數(shù)在實(shí)際問題中的應(yīng)用
第三章勾股定理
1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。第四章四邊形
1平行四邊形
性質(zhì):對邊相等;對角相等;對角線互相平分。判定:兩組對邊分別相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。推論:三角形的中位線平行第三邊,并且等于第三邊的一半。2特殊的平行四邊形:矩形、菱形、正方形(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)判定:有一個(gè)角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。(2)菱形
性質(zhì):菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等;
同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
擴(kuò)展閱讀:初二數(shù)學(xué)下冊知識點(diǎn)復(fù)習(xí)
八年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)
在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道什么。-----畢達(dá)哥拉斯
第十六章分式
AACA1.分式的定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子叫做分式。BBCB分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零AAC2.分式的基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。C(C0)BB3.分式的通分和約分:關(guān)鍵先是分解因式
acacacadad;4.分式的運(yùn)算:
bdbdbdbcbc分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
naanababacadbcadbc()n,分式乘方法則:分式乘方要把分子、分母分別乘方。bbcccbdbdbdbd分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质剑?/p>
然后再加減
混合運(yùn)算:運(yùn)算順序和以前一樣。能用運(yùn)算率簡算的可用運(yùn)算率簡算。
5.任何一個(gè)不等于零的數(shù)的零次冪等于1,即a01(a0);當(dāng)n為正整數(shù)時(shí),a6.正整數(shù)指數(shù)冪運(yùn)算性質(zhì)也可以推廣到整數(shù)指數(shù)冪.(m,n是整數(shù))
(1)同底數(shù)的冪的乘法:aaa(2)冪的乘方:(a)amnmnmnmnn1(a0)an;
;(3)積的乘方:(ab)nanbn;(4)同底數(shù)的冪的除法:aaamnmn(a≠0);
anan(5)商的乘方:()n();(b≠0)
bb7.分式方程:含分式,并且分母中含未知數(shù)的方程分式方程。
解分式方程的過程,實(shí)質(zhì)上是將方程兩邊同乘以一個(gè)整式(最簡公分母),把分式方程轉(zhuǎn)化為整式方程。
解分式方程時(shí),方程兩邊同乘以最簡公分母時(shí),最簡公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。
解分式方程的步驟:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;(3)解整式方程;(4)驗(yàn)根.
增根應(yīng)滿足兩個(gè)條件:一是其值應(yīng)使最簡公分母為0,二是其值應(yīng)是去分母后所的整式方程的根。分式方程檢驗(yàn)方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。
列方程應(yīng)用題的步驟是什么?(1)審;(2)設(shè);(3)列;(4)解;(5)答.
應(yīng)用題有幾種類型;基本公式是什么?基本上有五種:(1)行程問題:基本公式:路程=速度×?xí)r間而行程問題中又分相遇問題、追及問題.(2)數(shù)字問題在數(shù)字問題中要掌握十進(jìn)制數(shù)的表示法.(3)工程問題基本公式:工作量=工時(shí)×工效.(4)順?biāo)嫠畣栴}v順?biāo)?v靜水+v水.v逆水=v靜水-v水.
8.科學(xué)記數(shù)法:把一個(gè)數(shù)表示成a10的形式(其中1a10,n是整數(shù))的記數(shù)方法叫做科學(xué)記數(shù)法.
用科學(xué)記數(shù)法表示絕對值大于10的n位整數(shù)時(shí),其中10的指數(shù)是n1
用科學(xué)記數(shù)法表示絕對值小于1的正小數(shù)時(shí),其中10的指數(shù)是第一個(gè)非0數(shù)字前面0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的一個(gè)0)
n第十七章反比例函數(shù)1.定義:形如y=
k1(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=kykx1ykxx
2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和y=-x。對稱中心是:原點(diǎn)
3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。划(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。
5.反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對稱軸是角分線x、y的順序可交換。
1、反比例函數(shù)的概念一般地,函數(shù)yk(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成ykx1的形式。自變量xx的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號
yOx①x的取值范圍是x0,y的取值范圍是y0;②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。在每個(gè)象限內(nèi),y隨x的增大而減小。
k>0
yk(k0)xk1.定義:形如y=
k1(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=kykx1ykxx
2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和y=-x。對稱中心是:原點(diǎn)
3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減;當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。
第十八章勾股定理
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a+b=c。
2222.勾股定理逆定理:如果三角形三邊長a,b,c滿足a+b=c。,那么這個(gè)三角形是直角三角形。
2223.經(jīng)過證明被確認(rèn)正確的命題叫做定理。
我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
4.直角三角形的性質(zhì)
(1)、直角三角形的兩個(gè)銳角互余?杀硎救缦拢骸螩=90°∠A+∠B=90°(2)、在直角三角形中,30°角所對的直角邊等于斜邊的一半!螦=30°
可表示如下:BC=
1AB2∠C=90°(3)、直角三角形斜邊上的中線等于斜邊的一半∠ACB=90°
可表示如下:CD=D為AB的中點(diǎn)
1AB=BD=AD25、攝影定理
在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項(xiàng),每條直角邊是它們在斜邊上的攝影和斜邊的比例中項(xiàng)
∠ACB=90°CD2ADBDAC2ADABCD⊥ABBC2BDAB
6、常用關(guān)系式
由三角形面積公式可得:ABCD=ACBC
7、直角三角形的判定
1、有一個(gè)角是直角的三角形是直角三角形。
2、如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三邊長a,b,c有關(guān)系abc,那么這個(gè)三角形是直角三角形。
2228、命題、定理、證明
1、命題的概念
判斷一件事情的語句,叫做命題。理解:命題的定義包括兩層含義:(1)命題必須是個(gè)完整的句子;
(2)這個(gè)句子必須對某件事情做出判斷。2、命題的分類(按正確、錯(cuò)誤與否分)真命題(正確的命題)命題
假命題(錯(cuò)誤的命題)
所謂正確的命題就是:如果題設(shè)成立,那么結(jié)論一定成立的命題。所謂錯(cuò)誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。3、公理
人們在長期實(shí)踐中總結(jié)出來的得到人們公認(rèn)的真命題,叫做公理。4、定理
用推理的方法判斷為正確的命題叫做定理。5、證明
判斷一個(gè)命題的正確性的推理過程叫做證明。6、證明的一般步驟
(1)根據(jù)題意,畫出圖形。
(2)根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫出已知、求證。
(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
9、三角形中的中位線連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。(2)要會(huì)區(qū)別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:
位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。
常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:
結(jié)論1:三條中位線組成一個(gè)三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。
結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。
結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
10數(shù)學(xué)口訣.平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。
第十九章四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形2.對角線互相平分的四邊形是平行四邊形;
A3.兩組對角分別相等的四邊形是平行四邊形;
D4.一組對邊平行且相等的四邊形是平行四邊形。CB三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個(gè)角是直角的平行四邊形。
矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:1.有一個(gè)角是直角的平行四邊形叫做矩形。2.對角線相等的平行四邊形是矩形。3.有三個(gè)角是直角的四邊形是矩形。菱形的定義:鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。2.對角線互相垂直的平行四邊形是菱形。3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個(gè)角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。直角梯形的定義:有一個(gè)角是直角的梯形等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等。等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點(diǎn)。平行四邊形的重心是它的兩條對角線的交點(diǎn)。三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。寬和長的比是
5-1(約為0.618)的矩形叫做黃金矩形。
第二十章數(shù)據(jù)的分析
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。
學(xué)會(huì)權(quán)沒有直接給出數(shù)量,而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權(quán)平均數(shù)的方法。
2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到。┑捻樞蚺帕,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
4.極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。5.方差:方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。
6.平均數(shù):平均數(shù)受極端值的影響眾數(shù)不受極端值的影響,這是一個(gè)優(yōu)勢,中位數(shù)的計(jì)算很少不受極端值的影響。7.數(shù)據(jù)的收集與整理的步驟:1.收集數(shù)據(jù)2.整理數(shù)據(jù)3.描述數(shù)據(jù)4.分析數(shù)據(jù)5.撰寫調(diào)查報(bào)告6.交流
友情提示:本文中關(guān)于《初二數(shù)學(xué)下冊知識點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,初二數(shù)學(xué)下冊知識點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。