久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 計(jì)劃總結(jié) > 工作總結(jié) > 高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-26 17:55:35 | 移動(dòng)端:高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修4知識(shí)點(diǎn)

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

零角:不作任何旋轉(zhuǎn)形成的角2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.

第二象限角的集合為k36090k360180,k

第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k

終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k

3、與角終邊相同的角的集合為k360,k

第一象限角的集合為k360k36090,k

4、已知是第幾象限角,確定

n所在象限的方法:先把各象限均分n等n*份,再從x軸的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來是

第幾象限對應(yīng)的標(biāo)號(hào)即為終邊所落在的區(qū)域.

n5、長度等于半徑長的弧所對的圓心角叫做1弧度.

l6、半徑為r的圓的圓心角所對弧的長為l,則角的弧度數(shù)的絕對值是.

r1807、弧度制與角度制的換算公式:2360,1,157.3.1808、若扇形的圓心角為為弧度制,半徑為r,弧長為l,周長為C,面積為S,

11則lr,C2rl,Slrr2.

229、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是x,y,它與原點(diǎn)的距離是rrx2y20,則sinyxy,cos,tanx0.rrx

10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.

11、三角函數(shù)線:sin,cos,tan.12、同角三角函數(shù)的基本關(guān)系:1sincos1

22yPTOMAxsin21cos2,cos21sin2;2sintancossinsintancos,cos.

tan13、三角函數(shù)的誘導(dǎo)公式:

1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan.3sinsin,coscos,tantan.4sinsin,coscos,tantan.

口訣:函數(shù)名稱不變,符號(hào)看象限.

5sincos,cossin.22cos,cossin.226sin口訣:奇變偶不變,符號(hào)看象限.

14、函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)

ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的

1倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將函數(shù)

(縮短)到原來的倍(橫坐標(biāo)不變),ysinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長得到函數(shù)ysinx的圖象.

函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的得到函數(shù)

ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移

1倍(縱坐標(biāo)不變),

個(gè)單位長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)

的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)ysinx的圖象.

函數(shù)ysinx0,0的性質(zhì):

①振幅:;②周期:2;③頻率:f1;④相位:x;⑤初相:2.

函數(shù)ysinx,當(dāng)xx1時(shí),取得最小值為ymin;當(dāng)xx2時(shí),取得最

11ymaxymin,ymaxymin,x2x1x1x2.22215、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函ycosxytanx數(shù)ysinx性

大值為ymax,則質(zhì)

圖象

定義域值域

RR

xxk,k

2R

1,1

當(dāng)x2k1,1

k當(dāng)x2kk時(shí),

2最

時(shí),ymax1;當(dāng)

x2kymax1;當(dāng)x2k

2

k時(shí),ymin1.

2

既無最大值也無最小值

k時(shí),ymin1.

2周

期性奇奇函數(shù)偶性單

調(diào)在2k,2k

22性

偶函數(shù)奇函數(shù)

在2k,2kk上是

增函數(shù);在

在k,k

k上是增函數(shù);在2k,2k

32k,2k22k上是增函數(shù).

k上是減函數(shù).

k上是減函數(shù).

對稱中心k,0k對

對稱軸稱

性xkk

2對

稱中心對稱中心

k,0k2對稱軸xkk

k,0k2無對稱軸

16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.

有向線段的三要素:起點(diǎn)、方向、長度.零向量:長度為0的向量.

單位向量:長度等于1個(gè)單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運(yùn)算:

⑴三角形法則的特點(diǎn):首尾相連.⑵平行四邊形法則的特點(diǎn):共起點(diǎn).

⑶三角形不等式:ababab.

⑷運(yùn)算性質(zhì):①交換律:abba;②結(jié)合律:abcabc;③

a00aa.

C

⑸坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.

18、向量減法運(yùn)算:

⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.

ab

⑵坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.設(shè)、兩點(diǎn)的坐標(biāo)分別為x1,y1,x2,y2,則x1x2y,1y2.

abCC

19、向量數(shù)乘運(yùn)算:

⑴實(shí)數(shù)與向量a的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作a.①

aa;

②當(dāng)0時(shí),a的方向與a的方向相同;當(dāng)0時(shí),a的方向與a的方向相反;當(dāng)0時(shí),a0.

⑵運(yùn)算律:①aa;②aaa;③abab.

⑶坐標(biāo)運(yùn)算:設(shè)ax,y,則ax,yx,y.

20、向量共線定理:向量aa0與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使ba.

設(shè)ax1,y1,bx2,y2,其中b0,則當(dāng)且僅當(dāng)x1y2x2y10時(shí),向量a、bb0共線.

21、平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)

的任意向量a,有且只有一對實(shí)數(shù)1、2,使a1e12e2.(不共線的向量e1、e2作為

這一平面內(nèi)所有向量的一組基底)

22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段12上的一點(diǎn),1、2的坐標(biāo)分別是x1,y1,x2,y2,

xx2y1y2當(dāng)12時(shí),點(diǎn)的坐標(biāo)是1,.

1123、平面向量的數(shù)量積:

⑴ababcosa0,b0,0180.零向量與任一向量的數(shù)量積為0.

⑵性質(zhì):設(shè)a和b都是非零向量,則①abab0.②當(dāng)a與b同向時(shí),abab;22當(dāng)a與b反向時(shí),abab;aaaa或aaa.③abab.

⑶運(yùn)算律:①abba;②ababab;③abcacbc.

⑷坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量ax1,y1,bx2,y2,則abx1x2y1y2.

22若ax,y,則axy,或a2x2y2.

設(shè)ax1,y1,bx2,y2,則abx1x2y1y20.

設(shè)a、b都是非零向量,ax1,y1,bx2,y2,是a與b的夾角,則x1x2y1y2abcos.

2222abx1y1x2y224、兩角和與差的正弦、余弦和正切公式:⑴coscoscossinsin;

⑵coscoscossinsin;⑶sinsincoscossin;⑷sinsincoscossin;⑸tantantan(tantantan1tantan);

1tantan⑹tantantan(tantantan1tantan).

1tantan25、二倍角的正弦、余弦和正切公式:⑴sin22sincos.⑵

cos2cos2sin22cos2112sin21cos2).2(

cos2cos212,

sin2⑶tan22tan.

1tan222sin,其中tan26、sincos.

擴(kuò)展閱讀:高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修4知識(shí)點(diǎn)

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

零角:不作任何旋轉(zhuǎn)形成的角2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.

第一象限角的集合為k360k36090,k第二象限角的集合為k36090k360180,k第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k3、與角終邊相同的角的集合為k360,k4、已知是第幾象限角,確定

nnn所在象限的方法:先把各象限均分n等

*份,再從x軸的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來是第幾象限對應(yīng)的標(biāo)號(hào)即為

終邊所落在的區(qū)域.

lr5、長度等于半徑長的弧所對的圓心角叫做1弧度.

6、半徑為r的圓的圓心角所對弧的長為l,則角的弧度數(shù)的絕對值是1807、弧度制與角度制的換算公式:2360,1,157.3.180.

8、若扇形的圓心角為為弧度制,半徑為r,弧長為l,周長為C,面積為S,則lr,C2rl,S12lr12r.

29、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是x,y,它與原點(diǎn)的距離是rrxy022,則sinyr,cosxr,tanyxx0.

10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.

11、三角函數(shù)線:sin,cos,tan.12、同角三角函數(shù)的基本關(guān)系:1sincos1

22yPTsin1cos,cos1sin2222;2sincostan

OvMAxsinsintancos,cos.

tan13、三角函數(shù)的誘導(dǎo)公式:

1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan.3sinsin,coscos,tantan.4sinsin,coscos,tantan.

口訣:函數(shù)名稱不變,符號(hào)看象限.

5sincos2cos2,cossin2.

6sin,cossin2.

口訣:奇變偶不變,符號(hào)看象限.

14、函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)

ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮

短)到原來的

1倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將函數(shù)

ysinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),

得到函數(shù)ysinx的圖象.

函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的得到函數(shù)

ysinx的圖象;再將函數(shù)ysinx1倍(縱坐標(biāo)不變),

的圖象上所有點(diǎn)向左(右)平移

個(gè)單位

長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)

的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)ysinx的圖象.

函數(shù)ysinx0,0的性質(zhì):

①振幅:;②周期:.

2;③頻率:f12;④相位:x;⑤初相:

函數(shù)ysinx,當(dāng)xx1時(shí),取得最小值為ymin;當(dāng)xx2時(shí),取得最大值為ymax,則12ymaxymin,12ymaxymin,

2x2x1x1x2.

15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函ycosx

性質(zhì)

數(shù)ysinxytanx

圖象

定義域值域

RR

xxk,k

2R1,1

當(dāng)x2k21,1

k當(dāng)x2kk時(shí),

ymax1;當(dāng)x2k

最值

時(shí),ymax1;當(dāng)

x2k

既無最大值也無最小值

2

1.

k時(shí),ymin1.

k時(shí),ymin2周

期性奇奇函數(shù)偶性單

調(diào)在2k,2k

22性

2

偶函數(shù)奇函數(shù)

在2k,2kk上是

增函

-3-在k2,k數(shù);在

k上是增函數(shù);在2k,2k

32k,2k22k上是增函數(shù).

k上是減函數(shù).

k上是減函數(shù).

對稱中心k,0k對

對稱軸稱

性xkk

2對稱中心

對稱中心

k,0k

2k,0k2對稱軸xkk

無對稱軸

16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.

有向線段的三要素:起點(diǎn)、方向、長度.

零向量:長度為0的向量.

單位向量:長度等于1個(gè)單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運(yùn)算:

⑴三角形法則的特點(diǎn):首尾相連.⑵平行四邊形法則的特點(diǎn):共起點(diǎn).

⑶三角形不等式:ababab.

⑷運(yùn)算性質(zhì):①交換律:abba;②結(jié)合律:abcabc;③

a00aa.

⑸坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.

Ca

18、向量減法運(yùn)算:

⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.

⑵坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.設(shè)、兩點(diǎn)的坐標(biāo)分別為x1,y1,x2,y2,則x1x2y,1y2

b.

abCC

19、向量數(shù)乘運(yùn)算:

⑴實(shí)數(shù)與向量a的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作a.

①aa;

②當(dāng)0時(shí),a的方向與a的方向相同;當(dāng)0時(shí),a的方向與a的方向相反;當(dāng)0時(shí),a0.

⑵運(yùn)算律:①aa;②aaa;③abab.

⑶坐標(biāo)運(yùn)算:設(shè)ax,y,則ax,yx,y.

20、向量共線定理:向量aa0與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使ba.

設(shè)ax1,y1,bx2,y2,其中b0,則當(dāng)且僅當(dāng)x1y2x2y10時(shí),向量a、bb0共線.

21、平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)1、2,使a1e12e2.(不共線的向量e1、e2作為

這一平面內(nèi)所有向量的一組基底)

22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段12上的一點(diǎn),1、2的坐標(biāo)分別是x1,y1,x2,y2,xx2y1y2當(dāng)12時(shí),點(diǎn)的坐標(biāo)是1,.

1123、平面向量的數(shù)量積:

⑴ababcosa0,b0,0180.零向量與任一向量的數(shù)量積為0.

⑵性質(zhì):設(shè)a和b都是非零向量,則①abab0.②當(dāng)a與b同向時(shí),abab;22當(dāng)a與b反向時(shí),abab;aaaa或aaa.③abab.

⑶運(yùn)算律:①abba;②ababab;③abcacbc.

⑷坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量ax1,y1,bx2,y2,則abx1x2y1y2.

若ax,y,則a222xy,或axy.

22設(shè)ax1,y1,bx2,y2,則abx1x2y1y20.

設(shè)a、b都是非零向量,ax1,y1,bx2,y2,是a與b的夾角,則

abcosabx1x2y1y2xy2121xy2222.

24、兩角和與差的正弦、余弦和正切公式:⑴coscoscossinsin;

⑵coscoscossinsin;⑶sinsincoscossin;⑷sinsincoscossin;⑸tantantan1tantantantan1tantan(tantantan1tantan);

⑹tan(tantantan1tantan).

25、二倍角的正弦、余弦和正切公式:

⑴sin22sincos.⑵

2cos2cossin2cos112sin1cos222222(cos2cos212,

sin).

⑶tan22tan1tan2.

26、sincossin,其中tan22.

友情提示:本文中關(guān)于《高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。


高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.weilaioem.com/gongwen/421373.html