高一下學期數(shù)學總結(jié)
高一第二學期數(shù)學教學工作總結(jié)
黃流中學王陽華
本學期我擔任高一(4)班的數(shù)學教學,完成了必修2、5的教學,F(xiàn)將本學期高中數(shù)學必修2、必修5的教學總結(jié)如下:一、教學方面
1.要認真研究課程標準。在課程改革中,教師是關(guān)鍵,教師對新課程的理解與參與是推進課程改革的前提。認真學習數(shù)學課程標準,對課改有所了解。課程標準明確規(guī)定了教學的目的、教學目標、教學的指導思想以及教學內(nèi)容的確定和安排。繼承傳統(tǒng),更新教學觀念。高中數(shù)學新課標指出:“豐富學生的學習方式,改進學生的學習方法是高中數(shù)學課程追求的基本理念。學生的數(shù)學學習活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學等都是學習數(shù)學的重要方式。在高中數(shù)學教學中,教師的講授仍然是重要的教學方式之一,但要注意的是必須關(guān)注學生的主體參與,師生互動”。
2.合理使用教科書,提高課堂效益。對教材內(nèi)容,教學時需要作適當處理,適當補充或降低難度是備課必須處理的。靈活使用教材,才能在教學中少走彎路,提高教學質(zhì)量。對教材中存在的一些問題,教師應(yīng)認真理解課標,對課標要求的重點內(nèi)容要作適量的補充;對教材中不符合學生實際的題目要作適當?shù)恼{(diào)整。此外,還應(yīng)把握教材的“度”,不要想一步到位,如函數(shù)性質(zhì)的教學,要多次螺旋上升,逐步加深。
3.改進學生的學習方式,注意問題的提出、探究和解決。教會學生發(fā)現(xiàn)問題和提出問題的方法。以問題引導學生去發(fā)現(xiàn)、探究、歸納、總結(jié)。引導他們更加主動、有興趣的學,培養(yǎng)問題意識。
4.在課后作業(yè),反饋練習中培養(yǎng)學生自學能力。
課后作業(yè)和反饋練習、測試是檢查學生學習效果的重要手段。抓好這一環(huán)節(jié)的教學,也有利于復習和鞏固舊課,還鍛煉了學生的自學能力。在學完一課、一單元后,讓學生主動歸納總結(jié),要求學生盡量自己獨立完成,以便正確反饋教學效果。二存在困惑
1.書本習題都較簡單和基礎(chǔ),而我們的教輔題目偏難,加重了學生的學習負擔,而且學生完成情況很不好。課時又不足,教學時間緊,沒時間講評這些練習題。
2.在教學中,經(jīng)常出現(xiàn)一節(jié)課的教學任務(wù)完不成的現(xiàn)象,更少鞏固練習的時間。勉強按規(guī)定時間講完,一些學生聽得似懂非懂,造成差生越來越多。而且知識內(nèi)容需要補充的內(nèi)容有:乘法公式;因式分解的十字相乘法;一元二次方程及根與系數(shù)的關(guān)系;根式的運算;解不等式等知識。
3.雖然經(jīng)常要求學生課后要去完成教輔上的精選的題目,但是,相當部分的同學還是沒辦法完成。學生的課業(yè)負擔太重,有的學生則是學習意識淡薄。三、今后要注意的幾點
1.要處理好課時緊張與教學內(nèi)容多的矛盾,加強對教材的研究;2.注意對教輔材料題目的精選;
3.要加強對數(shù)學后進生的思想教育。
走進201*年,社會對教師的素質(zhì)要求更高,在今后的教育教學工作中,我將更嚴格要求自己,努力工作,發(fā)揚優(yōu)點,改正缺點,開拓前進,是需要繼續(xù)努力的方向。作為教師本人也希望能夠在自己今后的科研、教學上有所突破,抓住機遇,爭取機會,創(chuàng)造成績。
擴展閱讀:高一下學期數(shù)學知識點總結(jié)
第一章集合與函數(shù)概念
一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性.第一章集合與函數(shù)概念一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:{}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}2.集合的表示方法:列舉法與描述法。注意。撼S脭(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:{不是直角三角形的三角形}
②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實例:設(shè)A={x|x2-1=0}B={-11}“元素相同”結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?BB?C那么A?C④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=AA∪φ=AA∪B=B∪A.4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2+4+6+8+10+12+14++(2n)=n(n+1)
12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac
1.2.2、函數(shù)的表示法
1、函數(shù)的三種表示方法:解析法、圖象法、列表法. 1.3.1、單調(diào)性與最大(小)值1、注意函數(shù)單調(diào)性證明的一般格式: 1.3.2、奇偶性
1、一般地,如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就稱函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對稱.
2、一般地,如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就稱函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點對稱.
友情提示:本文中關(guān)于《高一下學期數(shù)學總結(jié)》給出的范例僅供您參考拓展思維使用,高一下學期數(shù)學總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。